Switch to: Citations

Add references

You must login to add references.
  1. The independence property in generalized dense pairs of structures.Alexander Berenstein, Alf Dolich & Alf Onshuus - 2011 - Journal of Symbolic Logic 76 (2):391 - 404.
    We provide a general theorem implying that for a (strongly) dependent theory T the theory of sufficiently well-behaved pairs of models of T is again (strongly) dependent. We apply the theorem to the case of lovely pairs of thorn-rank one theories as well as to a setting of dense pairs of first-order topological theories.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Dependent pairs.Ayhan Günaydin & Philipp Hieronymi - 2011 - Journal of Symbolic Logic 76 (2):377 - 390.
    We prove that certain pairs of ordered structures are dependent. Among these structures are dense and tame pairs of o-minimal structures and further the real field with a multiplicative subgroup with the Mann property, regardless of whether it is dense or discrete.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On lovely pairs of geometric structures.Alexander Berenstein & Evgueni Vassiliev - 2010 - Annals of Pure and Applied Logic 161 (7):866-878.
    We study the theory of lovely pairs of geometric structures, in particular o-minimal structures. We use the pairs to isolate a class of geometric structures called weakly locally modular which generalizes the class of linear structures in the settings of SU-rank one theories and o-minimal theories. For o-minimal theories, we use the Peterzil–Starchenko trichotomy theorem to characterize for a sufficiently general point, the local geometry around it in terms of the thorn U-rank of its type inside a lovely pair.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Paires de structures Stables.Bruno Poizat - 1983 - Journal of Symbolic Logic 48 (2):239-249.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Expansions of o-minimal structures by dense independent sets.Alfred Dolich, Chris Miller & Charles Steinhorn - 2016 - Annals of Pure and Applied Logic 167 (8):684-706.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • NIP for some pair-like theories.Gareth Boxall - 2011 - Archive for Mathematical Logic 50 (3-4):353-359.
    Generalising work of Berenstein, Dolich and Onshuus (Preprint 145 on MODNET Preprint server, 2008) and Günaydın and Hieronymi (Preprint 146 on MODNET Preprint server, 2010), we give sufficient conditions for a theory TP to inherit N I P from T, where TP is an expansion of the theory T by a unary predicate P. We apply our result to theories, studied by Belegradek and Zilber (J. Lond. Math. Soc. 78:563–579, 2008), of the real field with a subgroup of the unit (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Weakly one-based geometric theories.Alexander Berenstein & Evgueni Vassiliev - 2012 - Journal of Symbolic Logic 77 (2):392-422.
    We study the class of weakly locally modular geometric theories introduced in [4], a common generalization of the classes of linear SU-rank 1 and linear o-minimal theories. We find new conditions equivalent to weak local modularity: "weak one-basedness", absence of type definable "almost quasidesigns", and "generic linearity". Among other things, we show that weak one-basedness is closed under reducts. We also show that the lovely pair expansion of a non-trivial weakly one-based ω-categorical geometric theory interprets an infinite vector space over (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Dense codense predicates and the NTP 2.Alexander Berenstein & Hyeung-Joon Kim - 2016 - Mathematical Logic Quarterly 62 (1-2):16-24.
    We show that if T is any geometric theory having the NTP2 then the corresponding theories of lovely pairs of models of T and of H‐structures associated to T also have the NTP2. We also prove that if T is strong then the same two expansions of T are also strong.
    Download  
     
    Export citation  
     
    Bookmark   4 citations