Switch to: Citations

Add references

You must login to add references.
  1. (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   334 citations  
  • Con(u>i).Saharon Shelah - 1992 - Archive for Mathematical Logic 31 (6):433-443.
    We prove here the consistency of u>i where: u=Min{|X|:X⫅P(ω) generates a non-principle ultrafilter}, i=Min{|A|:A is a maximal independent family of subsets of ω}In this we continue Goldstern and Shelah [G1Sh388] where Con(r>u) was proved using a similar but different forcing. We were motivated by Vaughan [V] (which consists of a survey and a list of open problems). For more information on the subject see [V] and [G1Sh388].
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Coanalytic ultrafilter bases.Jonathan Schilhan - 2022 - Archive for Mathematical Logic 61 (3-4):567-581.
    We study the definability of ultrafilter bases on \ in the sense of descriptive set theory. As a main result we show that there is no coanalytic base for a Ramsey ultrafilter, while in L we can construct \ P-point and Q-point bases. We also show that the existence of a \ ultrafilter is equivalent to that of a \ ultrafilter base, for \. Moreover we introduce a Borel version of the classical ultrafilter number and make some observations.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Infinite combinatorics and definability.Arnold W. Miller - 1989 - Annals of Pure and Applied Logic 41 (2):179-203.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Restricted mad families.Osvaldo Guzmán, Michael Hrušák & Osvaldo Téllez - 2020 - Journal of Symbolic Logic 85 (1):149-165.
    Let ${\cal I}$ be an ideal on ω. By cov${}_{}^{\rm{*}}$ we denote the least size of a family ${\cal B} \subseteq {\cal I}$ such that for every infinite $X \in {\cal I}$ there is $B \in {\cal B}$ for which $B\mathop \cap \nolimits X$ is infinite. We say that an AD family ${\cal A} \subseteq {\cal I}$ is a MAD family restricted to${\cal I}$ if for every infinite $X \in {\cal I}$ there is $A \in {\cal A}$ such that $|X\mathop (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Projective wellorders and mad families with large continuum.Vera Fischer, Sy David Friedman & Lyubomyr Zdomskyy - 2011 - Annals of Pure and Applied Logic 162 (11):853-862.
    We show that is consistent with the existence of a -definable wellorder of the reals and a -definable ω-mad subfamily of [ω]ω.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Ideals of independence.Vera Fischer & Diana Carolina Montoya - 2019 - Archive for Mathematical Logic 58 (5-6):767-785.
    We study two ideals which are naturally associated to independent families. The first of them, denoted \, is characterized by a diagonalization property which allows along a cofinal sequence of stages along a finite support iteration to adjoin a maximal independent family. The second ideal, denoted \\), originates in Shelah’s proof of \ in Shelah, 433–443, 1992). We show that for every independent family \, \\subseteq \mathcal {J}_\mathcal {A}\) and define a class of maximal independent families, to which we refer (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Cardinal characteristics and projective wellorders.Vera Fischer & Sy David Friedman - 2010 - Annals of Pure and Applied Logic 161 (7):916-922.
    Using countable support iterations of S-proper posets, we show that the existence of a definable wellorder of the reals is consistent with each of the following: , and.
    Download  
     
    Export citation  
     
    Bookmark   13 citations