Switch to: Citations

Add references

You must login to add references.
  1. An ascending chain of S4 logics.Kit Fine - 1974 - Theoria 40 (2):110-116.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Logics containing k4. part II.Kit Fine - 1985 - Journal of Symbolic Logic 50 (3):619-651.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Canonical formulas for k4. part I: Basic results.Michael Zakharyaschev - 1992 - Journal of Symbolic Logic 57 (4):1377-1402.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Canonical formulas for k4. part II: Cofinal subframe logics.Michael Zakharyaschev - 1996 - Journal of Symbolic Logic 61 (2):421-449.
    Related Works: Part I: Michael Zakharyaschev. Canonical Formulas for $K4$. Part I: Basic Results. J. Symbolic Logic, Volume 57, Issue 4 , 1377--1402. Project Euclid: euclid.jsl/1183744119 Part III: Michael Zakharyaschev. Canonical Formulas for K4. Part III: The Finite Model Property. J. Symbolic Logic, Volume 62, Issue 3 , 950--975. Project Euclid: euclid.jsl/1183745306.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Splitting lattices of logics.Wolfgang Rautenberg - 1980 - Archive for Mathematical Logic 20 (3-4):155-159.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • An algebraic approach to subframe logics. Intuitionistic case.Guram Bezhanishvili & Silvio Ghilardi - 2007 - Annals of Pure and Applied Logic 147 (1):84-100.
    We develop duality between nuclei on Heyting algebras and certain binary relations on Heyting spaces. We show that these binary relations are in 1–1 correspondence with subframes of Heyting spaces. We introduce the notions of nuclear and dense nuclear varieties of Heyting algebras, and prove that a variety of Heyting algebras is nuclear iff it is a subframe variety, and that it is dense nuclear iff it is a cofinal subframe variety. We give an alternative proof that every subframe variety (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • An Algebraic Approach to Canonical Formulas: Intuitionistic Case.Guram Bezhanishvili - 2009 - Review of Symbolic Logic 2 (3):517.
    We introduce partial Esakia morphisms, well partial Esakia morphisms, and strong partial Esakia morphisms between Esakia spaces and show that they provide the dual description of (∧, →) homomorphisms, (∧, →, 0) homomorphisms, and (∧, →, ∨) homomorphisms between Heyting algebras, thus establishing a generalization of Esakia duality. This yields an algebraic characterization of Zakharyaschev’s subreductions, cofinal subreductions, dense subreductions, and the closed domain condition. As a consequence, we obtain a new simplified proof (which is algebraic in nature) of Zakharyaschev’s (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • An Algebraic Approach to Subframe Logics. Modal Case.Guram Bezhanishvili, Silvio Ghilardi & Mamuka Jibladze - 2011 - Notre Dame Journal of Formal Logic 52 (2):187-202.
    We prove that if a modal formula is refuted on a wK4-algebra ( B ,□), then it is refuted on a finite wK4-algebra which is isomorphic to a subalgebra of a relativization of ( B ,□). As an immediate consequence, we obtain that each subframe and cofinal subframe logic over wK4 has the finite model property. On the one hand, this provides a purely algebraic proof of the results of Fine and Zakharyaschev for K4 . On the other hand, it (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Intermediate logics and the disjunction property I.Andrzej Wronski - 1972 - Bulletin of the Section of Logic 1 (4):46-53.
    Download  
     
    Export citation  
     
    Bookmark   4 citations