Switch to: References

Add citations

You must login to add citations.
  1. Substitution Frege and extended Frege proof systems in non-classical logics.Emil Jeřábek - 2009 - Annals of Pure and Applied Logic 159 (1-2):1-48.
    We investigate the substitution Frege () proof system and its relationship to extended Frege () in the context of modal and superintuitionistic propositional logics. We show that is p-equivalent to tree-like , and we develop a “normal form” for -proofs. We establish connections between for a logic L, and for certain bimodal expansions of L.We then turn attention to specific families of modal and si logics. We prove p-equivalence of and for all extensions of , all tabular logics, all logics (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Intuitionistic Sahlqvist Theory for Deductive Systems.Damiano Fornasiere & Tommaso Moraschini - forthcoming - Journal of Symbolic Logic:1-59.
    Sahlqvist theory is extended to the fragments of the intuitionistic propositional calculus that include the conjunction connective. This allows us to introduce a Sahlqvist theory of intuitionistic character amenable to arbitrary protoalgebraic deductive systems. As an application, we obtain a Sahlqvist theorem for the fragments of the intuitionistic propositional calculus that include the implication connective and for the extensions of the intuitionistic linear logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Remarks on Stable Formulas in Intuitionistic Logic.Majid Alizadeh & Ali Bibak - forthcoming - Logic and Logical Philosophy:1.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Elementary Canonical Formulae: A Survey on Syntactic, Algorithmic, and Modeltheoretic Aspects.W. Conradie, V. Goranko & D. Vakarelov - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 17-51.
    In terms of validity in Kripke frames, a modal formula expresses a universal monadic second-order condition. Those modal formulae which are equivalent to first-order conditions are called elementary. Modal formulae which have a certain persistence property which implies their validity in all canonical frames of modal logics axiomatized with them, and therefore their completeness, are called canonical. This is a survey of a recent and ongoing study of the class of elementary and canonical modal formulae. We summarize main ideas and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Rules.Rosalie Iemhoff - 2015 - Journal of Philosophical Logic 44 (6):697-711.
    This paper contains a brief overview of the area of admissible rules with an emphasis on results about intermediate and modal propositional logics. No proofs are given but many references to the literature are provided.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Complexity of admissible rules.Emil Jeřábek - 2007 - Archive for Mathematical Logic 46 (2):73-92.
    We investigate the computational complexity of deciding whether a given inference rule is admissible for some modal and superintuitionistic logics. We state a broad condition under which the admissibility problem is coNEXP-hard. We also show that admissibility in several well-known systems (including GL, S4, and IPC) is in coNE, thus obtaining a sharp complexity estimate for admissibility in these systems.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The structure of lattices of subframe logics.Frank Wolter - 1997 - Annals of Pure and Applied Logic 86 (1):47-100.
    This paper investigates the structure of lattices of normal mono- and polymodal subframelogics, i.e., those modal logics whose frames are closed under a certain type of substructures. Nearly all basic modal logics belong to this class. The main lattice theoretic tool applied is the notion of a splitting of a complete lattice which turns out to be connected with the “geometry” and “topology” of frames, with Kripke completeness and with axiomatization problems. We investigate in detail subframe logics containing K4, those (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Characteristic Formulas of Partial Heyting Algebras.Alex Citkin - 2013 - Logica Universalis 7 (2):167-193.
    The goal of this paper is to generalize a notion of characteristic (or Jankov) formula by using finite partial Heyting algebras instead of the finite subdirectly irreducible algebras: with every finite partial Heyting algebra we associate a characteristic formula, and we study the properties of these formulas. We prove that any intermediate logic can be axiomatized by such formulas. We further discuss the correlations between characteristic formulas of finite partial algebras and canonical formulas. Then with every well-connected Heyting algebra we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Islands of Tractability for Relational Constraints: Towards Dichotomy Results for the Description of Logic EL.Agi Kurucz, Frank Wolter & Michael Zakharyaschev - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 271-291.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Admissible Rules of ${{mathsf{BD}_{2}}}$ and ${mathsf{GSc}}$.Jeroen P. Goudsmit - 2018 - Notre Dame Journal of Formal Logic 59 (3):325-353.
    The Visser rules form a basis of admissibility for the intuitionistic propositional calculus. We show how one can characterize the existence of covers in certain models by means of formulae. Through this characterization, we provide a new proof of the admissibility of a weak form of the Visser rules. Finally, we use this observation, coupled with a description of a generalization of the disjunction property, to provide a basis of admissibility for the intermediate logics BD2 and GSc.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Canonicity in Power and Modal Logics of Finite Achronal Width.Robert Goldblatt & Ian Hodkinson - 2024 - Review of Symbolic Logic 17 (3):705-735.
    We develop a method for showing that various modal logics that are valid in their countably generated canonical Kripke frames must also be valid in their uncountably generated ones. This is applied to many systems, including the logics of finite width, and a broader class of multimodal logics of ‘finite achronal width’ that are introduced here.
    Download  
     
    Export citation  
     
    Bookmark  
  • Stable Modal Logics.Guram Bezhanishvili, Nick Bezhanishvili & Julia Ilin - 2018 - Review of Symbolic Logic 11 (3):436-469.
    Stable logics are modal logics characterized by a class of frames closed under relation preserving images. These logics admit all filtrations. Since many basic modal systems such as K4 and S4 are not stable, we introduce the more general concept of an M-stable logic, where M is an arbitrary normal modal logic that admits some filtration. Of course, M can be chosen to be K4 or S4. We give several characterizations of M-stable logics. We prove that there are continuum many (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Rules with parameters in modal logic I.Emil Jeřábek - 2015 - Annals of Pure and Applied Logic 166 (9):881-933.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On logics with coimplication.Frank Wolter - 1998 - Journal of Philosophical Logic 27 (4):353-387.
    This paper investigates (modal) extensions of Heyting-Brouwer logic, i.e., the logic which results when the dual of implication (alias coimplication) is added to the language of intuitionistic logic. We first develop matrix as well as Kripke style semantics for those logics. Then, by extending the Gö;del-embedding of intuitionistic logic into S4, it is shown that all (modal) extensions of Heyting-Brouwer logic can be embedded into tense logics (with additional modal operators). An extension of the Blok-Esakia-Theorem is proved for this embedding.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Frame Based Formulas for Intermediate Logics.Nick Bezhanishvili - 2008 - Studia Logica 90 (2):139-159.
    In this paper we define the notion of frame based formulas. We show that the well-known examples of formulas arising from a finite frame, such as the Jankov-de Jongh formulas, subframe formulas and cofinal subframe formulas, are all particular cases of the frame based formulas. We give a criterion for an intermediate logic to be axiomatizable by frame based formulas and use this criterion to obtain a simple proof that every locally tabular intermediate logic is axiomatizable by Jankov-de Jongh formulas. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Erdős graphs resolve fine's canonicity problem.Robert Goldblatt, Ian Hodkinson & Yde Venema - 2004 - Bulletin of Symbolic Logic 10 (2):186-208.
    We show that there exist 2 ℵ 0 equational classes of Boolean algebras with operators that are not generated by the complex algebras of any first-order definable class of relational structures. Using a variant of this construction, we resolve a long-standing question of Fine, by exhibiting a bimodal logic that is valid in its canonical frames, but is not sound and complete for any first-order definable class of Kripke frames (a monomodal example can then be obtained using simulation results of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Intermediate Logics Admitting a Structural Hypersequent Calculus.Frederik M. Lauridsen - 2019 - Studia Logica 107 (2):247-282.
    We characterise the intermediate logics which admit a cut-free hypersequent calculus of the form \, where \ is the hypersequent counterpart of the sequent calculus \ for propositional intuitionistic logic, and \ is a set of so-called structural hypersequent rules, i.e., rules not involving any logical connectives. The characterisation of this class of intermediate logics is presented both in terms of the algebraic and the relational semantics for intermediate logics. We discuss various—positive as well as negative—consequences of this characterisation.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An algebraic approach to subframe logics. Intuitionistic case.Guram Bezhanishvili & Silvio Ghilardi - 2007 - Annals of Pure and Applied Logic 147 (1):84-100.
    We develop duality between nuclei on Heyting algebras and certain binary relations on Heyting spaces. We show that these binary relations are in 1–1 correspondence with subframes of Heyting spaces. We introduce the notions of nuclear and dense nuclear varieties of Heyting algebras, and prove that a variety of Heyting algebras is nuclear iff it is a subframe variety, and that it is dense nuclear iff it is a cofinal subframe variety. We give an alternative proof that every subframe variety (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Canonical formulas for wk4.Guram Bezhanishvili & Nick Bezhanishvili - 2012 - Review of Symbolic Logic 5 (4):731-762.
    We generalize the theory of canonical formulas for K4, the logic of transitive frames, to wK4, the logic of weakly transitive frames. Our main result establishes that each logic over wK4 is axiomatizable by canonical formulas, thus generalizing Zakharyaschev’s theorem for logics over K4. The key new ingredients include the concepts of transitive and strongly cofinal subframes of weakly transitive spaces. This yields, along with the standard notions of subframe and cofinal subframe logics, the new notions of transitive subframe and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An Algebraic Approach to Subframe Logics. Modal Case.Guram Bezhanishvili, Silvio Ghilardi & Mamuka Jibladze - 2011 - Notre Dame Journal of Formal Logic 52 (2):187-202.
    We prove that if a modal formula is refuted on a wK4-algebra ( B ,□), then it is refuted on a finite wK4-algebra which is isomorphic to a subalgebra of a relativization of ( B ,□). As an immediate consequence, we obtain that each subframe and cofinal subframe logic over wK4 has the finite model property. On the one hand, this provides a purely algebraic proof of the results of Fine and Zakharyaschev for K4 . On the other hand, it (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • An Algebraic Approach to Canonical Formulas: Intuitionistic Case.Guram Bezhanishvili - 2009 - Review of Symbolic Logic 2 (3):517.
    We introduce partial Esakia morphisms, well partial Esakia morphisms, and strong partial Esakia morphisms between Esakia spaces and show that they provide the dual description of (∧, →) homomorphisms, (∧, →, 0) homomorphisms, and (∧, →, ∨) homomorphisms between Heyting algebras, thus establishing a generalization of Esakia duality. This yields an algebraic characterization of Zakharyaschev’s subreductions, cofinal subreductions, dense subreductions, and the closed domain condition. As a consequence, we obtain a new simplified proof (which is algebraic in nature) of Zakharyaschev’s (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Stable Formulas in Intuitionistic Logic.Nick Bezhanishvili & Dick de Jongh - 2018 - Notre Dame Journal of Formal Logic 59 (3):307-324.
    In 1995 Visser, van Benthem, de Jongh, and Renardel de Lavalette introduced NNIL-formulas, showing that these are exactly the formulas preserved under taking submodels of Kripke models. In this article we show that NNIL-formulas are up to frame equivalence the formulas preserved under taking subframes of frames, that NNIL-formulas are subframe formulas, and that subframe logics can be axiomatized by NNIL-formulas. We also define a new syntactic class of ONNILLI-formulas. We show that these are the formulas preserved in monotonic images (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An Algebraic Approach to Canonical Formulas: Modal Case.Guram Bezhanishvili & Nick Bezhanishvili - 2011 - Studia Logica 99 (1-3):93-125.
    We introduce relativized modal algebra homomorphisms and show that the category of modal algebras and relativized modal algebra homomorphisms is dually equivalent to the category of modal spaces and partial continuous p-morphisms, thus extending the standard duality between the category of modal algebras and modal algebra homomorphisms and the category of modal spaces and continuous p-morphisms. In the transitive case, this yields an algebraic characterization of Zakharyaschev’s subreductions, cofinal subreductions, dense subreductions, and the closed domain condition. As a consequence, we (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations