Switch to: Citations

Add references

You must login to add references.
  1. Constructive notions of equicontinuity.Douglas S. Bridges - 2009 - Archive for Mathematical Logic 48 (5):437-448.
    In the informal setting of Bishop-style constructive reverse mathematics we discuss the connection between the antithesis of Specker’s theorem, Ishihara’s principle BD-N, and various types of equicontinuity. In particular, we prove that the implication from pointwise equicontinuity to uniform sequential equicontinuity is equivalent to the antithesis of Specker’s theorem; and that, for a family of functions on a separable metric space, the implication from uniform sequential equicontinuity to uniform equicontinuity is equivalent to BD-N.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Effective choice and boundedness principles in computable analysis.Vasco Brattka & Guido Gherardi - 2011 - Bulletin of Symbolic Logic 17 (1):73-117.
    In this paper we study a new approach to classify mathematical theorems according to their computational content. Basically, we are asking the question which theorems can be continuously or computably transferred into each other? For this purpose theorems are considered via their realizers which are operations with certain input and output data. The technical tool to express continuous or computable relations between such operations is Weihrauch reducibility and the partially ordered degree structure induced by it. We have identified certain choice (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • On the (semi)lattices induced by continuous reducibilities.Arno Pauly - 2010 - Mathematical Logic Quarterly 56 (5):488-502.
    Continuous reducibilities are a proven tool in Computable Analysis, and have applications in other fields such as Constructive Mathematics or Reverse Mathematics. We study the order-theoretic properties of several variants of the two most important definitions, and especially introduce suprema for them. The suprema are shown to commutate with several characteristic numbers.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Closed choice and a uniform low basis theorem.Vasco Brattka, Matthew de Brecht & Arno Pauly - 2012 - Annals of Pure and Applied Logic 163 (8):986-1008.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • How Incomputable Is the Separable Hahn-Banach Theorem?Guido Gherardi & Alberto Marcone - 2009 - Notre Dame Journal of Formal Logic 50 (4):393-425.
    We determine the computational complexity of the Hahn-Banach Extension Theorem. To do so, we investigate some basic connections between reverse mathematics and computable analysis. In particular, we use Weak König's Lemma within the framework of computable analysis to classify incomputable functions of low complexity. By defining the multivalued function Sep and a natural notion of reducibility for multivalued functions, we obtain a computational counterpart of the subsystem of second-order arithmetic WKL0. We study analogies and differences between WKL0 and the class (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Borel complexity and computability of the Hahn–Banach Theorem.Vasco Brattka - 2008 - Archive for Mathematical Logic 46 (7-8):547-564.
    The classical Hahn–Banach Theorem states that any linear bounded functional defined on a linear subspace of a normed space admits a norm-preserving linear bounded extension to the whole space. The constructive and computational content of this theorem has been studied by Bishop, Bridges, Metakides, Nerode, Shore, Kalantari Downey, Ishihara and others and it is known that the theorem does not admit a general computable version. We prove a new computable version of this theorem without unrolling the classical proof of the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The cohesive principle and the Bolzano‐Weierstraß principle.Alexander P. Kreuzer - 2011 - Mathematical Logic Quarterly 57 (3):292-298.
    The aim of this paper is to determine the logical and computational strength of instances of the Bolzano-Weierstraß principle and a weak variant of it.We show that BW is instance-wise equivalent to the weak König’s lemma for Σ01-trees . This means that from every bounded sequence of reals one can compute an infinite Σ01-0/1-tree, such that each infinite branch of it yields an accumulation point and vice versa. Especially, this shows that the degrees d ≫ 0′ are exactly those containing (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Effective Borel measurability and reducibility of functions.Vasco Brattka - 2005 - Mathematical Logic Quarterly 51 (1):19-44.
    The investigation of computational properties of discontinuous functions is an important concern in computable analysis. One method to deal with this subject is to consider effective variants of Borel measurable functions. We introduce such a notion of Borel computability for single-valued as well as for multi-valued functions by a direct effectivization of the classical definition. On Baire space the finite levels of the resulting hierarchy of functions can be characterized using a notion of reducibility for functions and corresponding complete functions. (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Singular coverings and non‐uniform notions of closed set computability.Stéphane Le Roux & Martin Ziegler - 2008 - Mathematical Logic Quarterly 54 (5):545-560.
    The empty set of course contains no computable point. On the other hand, surprising results due to Zaslavskiĭ, Tseĭtin, Kreisel, and Lacombe have asserted the existence of non-empty co-r. e. closed sets devoid of computable points: sets which are even “large” in the sense of positive Lebesgue measure.This leads us to investigate for various classes of computable real subsets whether they always contain a computable point.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Weihrauch degrees, omniscience principles and weak computability.Vasco Brattka & Guido Gherardi - 2011 - Journal of Symbolic Logic 76 (1):143 - 176.
    In this paper we study a reducibility that has been introduced by Klaus Weihrauch or, more precisely, a natural extension for multi-valued functions on represented spaces. We call the corresponding equivalence classes Weihrauch degrees and we show that the corresponding partial order induces a lower semi-lattice. It turns out that parallelization is a closure operator for this semi-lattice and that the parallelized Weihrauch degrees even form a lattice into which the Medvedev lattice and the Turing degrees can be embedded. The (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On the computational content of the Bolzano-Weierstraß Principle.Pavol Safarik & Ulrich Kohlenbach - 2010 - Mathematical Logic Quarterly 56 (5):508-532.
    We will apply the methods developed in the field of ‘proof mining’ to the Bolzano-Weierstraß theorem BW and calibrate the computational contribution of using this theorem in proofs of combinatorial statements. We provide an explicit solution of the Gödel functional interpretation as well as the monotone functional interpretation of BW for the product space Πi ∈ℕ[–ki, ki] . This results in optimal program and bound extraction theorems for proofs based on fixed instances of BW, i.e. for BW applied to fixed (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Computational complexity on computable metric spaces.Klaus Weirauch - 2003 - Mathematical Logic Quarterly 49 (1):3-21.
    We introduce a new Turing machine based concept of time complexity for functions on computable metric spaces. It generalizes the ordinary complexity of word functions and the complexity of real functions studied by Ko [19] et al. Although this definition of TIME as the maximum of a generally infinite family of numbers looks straightforward, at first glance, examples for which this maximum exists seem to be very rare. It is the main purpose of this paper to prove that, nevertheless, the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Complexity issues for Preorders on finite labeled forests.Victor Selivanov & Peter Hertling - 2014 - In Victor Selivanov & Peter Hertling (eds.), Complexity issues for Preorders on finite labeled forests. pp. 165-190.
    Download  
     
    Export citation  
     
    Bookmark   1 citation