- (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.details
|
|
(2 other versions)Set Theory.Keith J. Devlin - 1981 - Journal of Symbolic Logic 46 (4):876-877.details
|
|
On the History of Souslin's Problem.Carlos Alvarez - 1999 - Archive for History of Exact Sciences 54 (3):181-242.details
|
|
The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.details
|
|
Set Theory. An Introduction to Independence Proofs.James E. Baumgartner & Kenneth Kunen - 1986 - Journal of Symbolic Logic 51 (2):462.details
|
|
(2 other versions)Set Theory. An Introduction to Large Cardinals.Azriel Levy - 1978 - Journal of Symbolic Logic 43 (2):384-384.details
|
|
A global version of a theorem of Ben-David and Magidor.Arthur W. Apter & James Cummings - 2000 - Annals of Pure and Applied Logic 102 (3):199-222.details
|
|
Set Theory: An Introduction to Large Cardinals.F. R. Drake & T. J. Jech - 1976 - British Journal for the Philosophy of Science 27 (2):187-191.details
|
|
(2 other versions)Scales, squares and reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (1):35-98.details
|
|
Characterization of □κin core models.Ernest Schimmerling & Martin Zeman - 2004 - Journal of Mathematical Logic 4 (01):1-72.details
|
|
Same graph, different universe.Assaf Rinot - 2017 - Archive for Mathematical Logic 56 (7):783-796.details
|
|
μ-complete Souslin trees on μ+.Menachem Kojman & Saharon Shelah - 1993 - Archive for Mathematical Logic 32 (3):195-201.details
|
|
The tree property at successors of singular cardinals.Menachem Magidor & Saharon Shelah - 1996 - Archive for Mathematical Logic 35 (5-6):385-404.details
|
|
Aronszajn trees, square principles, and stationary reflection.Chris Lambie-Hanson - 2017 - Mathematical Logic Quarterly 63 (3-4):265-281.details
|
|
Introduction to Set Theory.K. Hrbacek & T. Jech - 2001 - Studia Logica 69 (3):448-449.details
|
|
Chain conditions of products, and weakly compact cardinals.Assaf Rinot - 2014 - Bulletin of Symbolic Logic 20 (3):293-314,.details
|
|
Canonical models for ℵ1-combinatorics.Saharon Shelah & Jindr̆ich Zapletal - 1999 - Annals of Pure and Applied Logic 98 (1-3):217-259.details
|
|
(2 other versions)Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.details
|
|
Sticks and clubs.Sakaé Fuchino, Saharon Shelah & Lajos Soukup - 1997 - Annals of Pure and Applied Logic 90 (1-3):57-77.details
|
|
Constructibility.Keith J. Devlin - 1987 - Journal of Symbolic Logic 52 (3):864-867.details
|
|
Trees, subtrees and order types.Stevo B. Todorčević - 1981 - Annals of Mathematical Logic 20 (3):233.details
|
|
A Question about Suslin Trees and the Weak Square Hierarchy.Ernest Schimmerling - 2005 - Notre Dame Journal of Formal Logic 46 (3):373-374.details
|
|
(1 other version)An variation for one souslin tree.Paul Larson - 1999 - Journal of Symbolic Logic 64 (1):81-98.details
|
|
Global square sequences in extender models.Martin Zeman - 2010 - Annals of Pure and Applied Logic 161 (7):956-985.details
|
|
Souslin trees and successors of singular cardinals.Shai Ben-David & Saharon Shelah - 1986 - Annals of Pure and Applied Logic 30 (3):207-217.details
|
|
Calude, C., Calude, E. and Khoussainov, B., Deterministic.S. Fuchino, S. Shelah, L. Soukup, M. Gitik, C. Merimovich, R. Laver, S. Riis, P. Sewell, S. Soloviev & O. Spinas - 1997 - Annals of Pure and Applied Logic 90 (1-3):277.details
|
|
On guessing generalized clubs at the successors of regulars.Assaf Rinot - 2011 - Annals of Pure and Applied Logic 162 (7):566-577.details
|
|
(1 other version)Higher Souslin trees and the generalized continuum hypothesis.John Gregory - 1976 - Journal of Symbolic Logic 41 (3):663-671.details
|
|
Jensen's □ principles and the Novak number of partially ordered sets.Boban Veličković - 1986 - Journal of Symbolic Logic 51 (1):47-58.details
|
|
(1 other version)Discovering modern set theory II: Set-theoretic tools for every mathematician.W. Just & M. Weese - forthcoming - Amer. Math. Soc., Providence, Ri.details
|
|