Switch to: Citations

Add references

You must login to add references.
  1. (2 other versions)Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • (2 other versions)Scales, squares and reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (1):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.
    Download  
     
    Export citation  
     
    Bookmark   270 citations  
  • Forcing closed unbounded sets.Uri Abraham & Saharon Shelah - 1983 - Journal of Symbolic Logic 48 (3):643-657.
    We discuss the problem of finding forcing posets which introduce closed unbounded subsets to a given stationary set.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • (1 other version)Higher Souslin trees and the generalized continuum hypothesis.John Gregory - 1976 - Journal of Symbolic Logic 41 (3):663-671.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A microscopic approach to Souslin-tree constructions, Part I.Ari Meir Brodsky & Assaf Rinot - 2017 - Annals of Pure and Applied Logic 168 (11):1949-2007.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Aronszajn trees, square principles, and stationary reflection.Chris Lambie-Hanson - 2017 - Mathematical Logic Quarterly 63 (3-4):265-281.
    We investigate questions involving Aronszajn trees, square principles, and stationary reflection. We first consider two strengthenings of introduced by Brodsky and Rinot for the purpose of constructing κ‐Souslin trees. Answering a question of Rinot, we prove that the weaker of these strengthenings is compatible with stationary reflection at κ but the stronger is not. We then prove that, if μ is a singular cardinal, implies the existence of a special ‐tree with a cf(μ)‐ascent path, thus answering a question of Lücke.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A cofinality-preserving small forcing may introduce a special Aronszajn tree.Assaf Rinot - 2009 - Archive for Mathematical Logic 48 (8):817-823.
    It is relatively consistent with the existence of two supercompact cardinals that a special Aronszajn tree of height ${\aleph_{\omega_1+1}}$ is introduced by a cofinality-preserving forcing of size ${\aleph_3}$.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Square and Delta reflection.Laura Fontanella & Yair Hayut - 2016 - Annals of Pure and Applied Logic 167 (8):663-683.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Question about Suslin Trees and the Weak Square Hierarchy.Ernest Schimmerling - 2005 - Notre Dame Journal of Formal Logic 46 (3):373-374.
    We present a question about Suslin trees and the weak square hierarchy which was contributed to the list of open problems of the BIRS workshop.
    Download  
     
    Export citation  
     
    Bookmark   3 citations