Switch to: References

Add citations

You must login to add citations.
  1. Adding many Baumgartner clubs.David Asperó - 2017 - Archive for Mathematical Logic 56 (7-8):797-810.
    I define a homogeneous \–c.c. proper product forcing for adding many clubs of \ with finite conditions. I use this forcing to build models of \=\aleph _2\), together with \\) and \ large and with very strong failures of club guessing at \.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The consistency strength of hyperstationarity.Joan Bagaria, Menachem Magidor & Salvador Mancilla - 2019 - Journal of Mathematical Logic 20 (1):2050004.
    We introduce the large-cardinal notions of ξ-greatly-Mahlo and ξ-reflection cardinals and prove (1) in the constructible universe, L, the first ξ-reflection cardinal, for ξ a successor ordinal, is strictly between the first ξ-greatly-Mahlo and the first Π1ξ-indescribable cardinals, (2) assuming the existence of a ξ-reflection cardinal κ in L, ξ a successor ordinal, there exists a forcing notion in L that preserves cardinals and forces that κ is (ξ+1)-stationary, which implies that the consistency strength of the existence of a (ξ+1)-stationary (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • More Notions of Forcing Add a Souslin Tree.Ari Meir Brodsky & Assaf Rinot - 2019 - Notre Dame Journal of Formal Logic 60 (3):437-455.
    An ℵ1-Souslin tree is a complicated combinatorial object whose existence cannot be decided on the grounds of ZFC alone. But fifteen years after Tennenbaum and Jech independently devised notions of forcing for introducing such a tree, Shelah proved that already the simplest forcing notion—Cohen forcing—adds an ℵ1-Souslin tree. In this article, we identify a rather large class of notions of forcing that, assuming a GCH-type hypothesis, add a λ+-Souslin tree. This class includes Prikry, Magidor, and Radin forcing.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Adding Closed Unbounded Subsets of ω₂ with Finite Forcing.William J. Mitchell - 2005 - Notre Dame Journal of Formal Logic 46 (3):357-371.
    An outline is given of the proof that the consistency of a κ⁺-Mahlo cardinal implies that of the statement that I[ω₂] does not include any stationary subsets of Cof(ω₁). An additional discussion of the techniques of this proof includes their use to obtain a model with no ω₂-Aronszajn tree and to add an ω₂-Souslin tree with finite conditions.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)On< i> L_< sub>∞ κ-free Boolean algebras.Sakaé Fuchino, Sabine Koppelberg & Makoto Takahashi - 1992 - Annals of Pure and Applied Logic 55 (3):265-284.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Power function on stationary classes.Moti Gitik & Carmi Merimovich - 2006 - Annals of Pure and Applied Logic 140 (1):75-103.
    We show that under certain large cardinal requirements there is a generic extension in which the power function behaves differently on different stationary classes. We achieve this by doing an Easton support iteration of the Radin on extenders forcing.
    Download  
     
    Export citation  
     
    Bookmark  
  • Forcing axioms via ground model interpretations.Christopher Henney-Turner & Philipp Schlicht - 2023 - Annals of Pure and Applied Logic 174 (6):103260.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the existence of skinny stationary subsets.Yo Matsubara, Hiroshi Sakai & Toshimichi Usuba - 2019 - Annals of Pure and Applied Logic 170 (5):539-557.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Homogeneous changes in cofinalities with applications to HOD.Omer Ben-Neria & Spencer Unger - 2017 - Journal of Mathematical Logic 17 (2):1750007.
    We present a new technique for changing the cofinality of large cardinals using homogeneous forcing. As an application we show that many singular cardinals in [Formula: see text] can be measurable in HOD. We also answer a related question of Cummings, Friedman and Golshani by producing a model in which every regular uncountable cardinal [Formula: see text] in [Formula: see text] is [Formula: see text]-supercompact in HOD.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)On the size of closed unbounded sets.James E. Baumgartner - 1991 - Annals of Pure and Applied Logic 54 (3):195-227.
    We study various aspects of the size, including the cardinality, of closed unbounded subsets of [λ]<κ, especially when λ = κ+n for n ε ω. The problem is resolved into the study of the size of certain stationary sets. Relative to the existence of an ω1-Erdös cardinal it is shown consistent that ωω3 < ωω13 and every closed unbounded subsetof [ω3]<ω2 has cardinality ωω13. A weakening of the ω1-Erdös property, ω1-remarkability, is defined and shown to be retained under a large (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Definability degrees.Sy D. Friedman - 2005 - Mathematical Logic Quarterly 51 (5):448-449.
    We establish the equiconsistency of a simple statement in definability theory with the failure of the GCH at all infinite cardinals. The latter was shown by Foreman and Woodin to be consistent, relative to the existence of large cardinals.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Hyperclass forcing in Morse-Kelley class theory.Carolin Antos & Sy-David Friedman - 2017 - Journal of Symbolic Logic 82 (2):549-575.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)On L∞κ-free Boolean algebras.Sakaé Fuchino, Sabine Koppelberg & Makoto Takahashi - 1992 - Annals of Pure and Applied Logic 55 (3):265-284.
    We study L∞κ-freeness in the variety of Boolean algebras. It is shown that some of the theorems on L∞κ-free algebras which are known to hold in varieties such as groups, abelian groups etc. are also true for Boolean algebras. But we also investigate properties such as the ccc of L∞κ-free Boolean algebras which have no counterpart in the varieties above.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the weak distributivity game.Anastasis Kamburelis - 1994 - Annals of Pure and Applied Logic 66 (1):19-26.
    We study the gameGfin related to weak distributivity of a given Boolean algebraB. Consider the following implication: ifBis weakly -distributive then player I does not have a winning strategy in the gameGfin. We show that this implication is true for properBbut it is not true in general.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A general Mitchell style iteration.John Krueger - 2008 - Mathematical Logic Quarterly 54 (6):641-651.
    We work out the details of a schema for a mixed support forcing iteration, which generalizes the Mitchell model [7] with no Aronszajn trees on ω2.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forcing closed unbounded subsets of< i> ω_< sub> 2.M. C. Stanley - 2001 - Annals of Pure and Applied Logic 110 (1):23-87.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Forcing closed unbounded subsets of ω2.M. C. Stanley - 2001 - Annals of Pure and Applied Logic 110 (1-3):23-87.
    It is shown that there is no satisfactory first-order characterization of those subsets of ω 2 that have closed unbounded subsets in ω 1 , ω 2 and GCH preserving outer models. These “anticharacterization” results generalize to subsets of successors of uncountable regular cardinals. Similar results are proved for trees of height and cardinality κ + and for partitions of [ κ + ] 2 , when κ is an infinite cardinal.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • In memoriam: James Earl Baumgartner (1943–2011).J. A. Larson - 2017 - Archive for Mathematical Logic 56 (7):877-909.
    James Earl Baumgartner (March 23, 1943–December 28, 2011) came of age mathematically during the emergence of forcing as a fundamental technique of set theory, and his seminal research changed the way set theory is done. He made fundamental contributions to the development of forcing, to our understanding of uncountable orders, to the partition calculus, and to large cardinals and their ideals. He promulgated the use of logic such as absoluteness and elementary submodels to solve problems in set theory, he applied (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Some applications of mixed support iterations.John Krueger - 2009 - Annals of Pure and Applied Logic 158 (1-2):40-57.
    We give some applications of mixed support forcing iterations to the topics of disjoint stationary sequences and internally approachable sets. In the first half of the paper we study the combinatorial content of the idea of a disjoint stationary sequence, including its relation to adding clubs by forcing, the approachability ideal, canonical structure, the proper forcing axiom, and properties related to internal approachability. In the second half of the paper we present some consistency results related to these ideas. We construct (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fat sets and saturated ideals.John Krueger - 2003 - Journal of Symbolic Logic 68 (3):837-845.
    We strengthen a theorem of Gitik and Shelah [6] by showing that if κ is either weakly inaccessible or the successor of a singular cardinal and S is a stationary subset of κ such that $NS_{\kappa} \upharpoonright S$ is saturated then $\kappa \S$ is fat. Using this theorem we derive some results about the existence of fat stationary sets. We then strengthen some results due to Baumgartner and Taylor [2], showing in particular that if I is a $\lambda^{+++}-saturated$ normal ideal (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Internal approachability and reflection.John Krueger - 2008 - Journal of Mathematical Logic 8 (1):23-39.
    We prove that the Weak Reflection Principle does not imply that every stationary set reflects to an internally approachable set. We show that several variants of internal approachability, namely, internally unbounded, internally stationary, and internally club, are not provably equivalent.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On potential isomorphism and non-structure.Taneli Huuskonen, Tapani Hyttinen & Mika Rautila - 2004 - Archive for Mathematical Logic 43 (1):85-120.
    We show in the paper that for any non-classifiable countable theory T there are non-isomorphic models and that can be forced to be isomorphic without adding subsets of small cardinality. By making suitable cardinal arithmetic assumptions we can often preserve stationary sets as well. We also study non-structure theorems relative to the Ehrenfeucht-Fraïssé game.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Resurrection axioms and uplifting cardinals.Joel David Hamkins & Thomas A. Johnstone - 2014 - Archive for Mathematical Logic 53 (3-4):463-485.
    We introduce the resurrection axioms, a new class of forcing axioms, and the uplifting cardinals, a new large cardinal notion, and prove that various instances of the resurrection axioms are equiconsistent over ZFC with the existence of an uplifting cardinal.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Short extenders forcings – doing without preparations.Moti Gitik - 2020 - Annals of Pure and Applied Logic 171 (5):102787.
    We introduce certain morass type structures and apply them to blowing up powers of singular cardinals. As a bonus, a forcing for adding clubs with finite conditions to higher cardinals is obtained.
    Download  
     
    Export citation  
     
    Bookmark  
  • Large cardinals and definable counterexamples to the continuum hypothesis.Matthew Foreman & Menachem Magidor - 1995 - Annals of Pure and Applied Logic 76 (1):47-97.
    In this paper we consider whether L(R) has “enough information” to contain a counterexample to the continuum hypothesis. We believe this question provides deep insight into the difficulties surrounding the continuum hypothesis. We show sufficient conditions for L(R) not to contain such a counterexample. Along the way we establish many results about nonstationary towers, non-reflecting stationary sets, generalizations of proper and semiproper forcing and Chang's conjecture.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Forcing with finite conditions.Gregor Dolinar & Mirna Džamonja - 2013 - Annals of Pure and Applied Logic 164 (1):49-64.
    We give a construction of the square principle by means of forcing with finite conditions.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Cohen and Prikry Forcing Notions.Tom Benhamou & Moti Gitik - 2024 - Journal of Symbolic Logic 89 (2):858-904.
    Abstract(1)We show that it is possible to add $\kappa ^+$ -Cohen subsets to $\kappa $ with a Prikry forcing over $\kappa $. This answers a question from [9].(2)A strengthening of non-Galvin property is introduced. It is shown to be consistent using a single measurable cardinal which improves a previous result by S. Garti, S. Shelah, and the first author [5].(3)A situation with Extender-based Prikry forcings is examined. This relates to a question of H. Woodin.
    Download  
     
    Export citation  
     
    Bookmark  
  • Diagonal supercompact Radin forcing.Omer Ben-Neria, Chris Lambie-Hanson & Spencer Unger - 2020 - Annals of Pure and Applied Logic 171 (10):102828.
    Motivated by the goal of constructing a model in which there are no κ-Aronszajn trees for any regular $k>\aleph_1$, we produce a model with many singular cardinals where both the singular cardinals hypothesis and weak square fail.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • 2007 Annual Meeting of the Association for Symbolic Logic.Mirna Džamonja - 2007 - Bulletin of Symbolic Logic 13 (3):386-408.
    Download  
     
    Export citation  
     
    Bookmark