Switch to: Citations

Add references

You must login to add references.
  1. Some remarks on definable equivalence relations in o-minimal structures.Anand Pillay - 1986 - Journal of Symbolic Logic 51 (3):709-714.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Definable types in o-minimal theories.David Marker & Charles I. Steinhorn - 1994 - Journal of Symbolic Logic 59 (1):185-198.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Tame Topology and O-Minimal Structures.Lou van den Dries - 2000 - Bulletin of Symbolic Logic 6 (2):216-218.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • (1 other version)Stabilité polynômiale Des corps différentiels.Natacha Portier - 1999 - Journal of Symbolic Logic 64 (2):803-816.
    A notion of complexity for an arbitrary structure was defined in the book of Poizat Les petits cailloux (1995): we can define P and NP problems over a differential field K. Using the Witness Theorem of Blum et al., we prove the P-stability of the theory of differential fields: a P problem over a differential field K is still P when restricts to a sub-differential field k of K. As a consequence, if P = NP over some differentially closed field (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Definable Types in $mathscr{O}$-Minimal Theories.David Marker & Charles I. Steinhorn - 1994 - Journal of Symbolic Logic 59 (1):185-198.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Elimination of Quantifiers in Algebraic Structures.Angus Macintyre, Kenneth Mckenna, Lou van den Dries, L. P. D. van den Dries, Bruce I. Rose & M. Boffa - 1985 - Journal of Symbolic Logic 50 (4):1079-1080.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Accessible telephone directories.John B. Goode - 1994 - Journal of Symbolic Logic 59 (1):92-105.
    We reduce to a standard circuit-size complexity problem a relativisation of the $P = NP$ question that we believe to be connected with the same question in the model for computation over the reals defined by L. Blum, M. Shub, and S. Smale. On this occasion, we set the foundations of a general theory for computation over an arbitrary structure, extending what these three authors did in the case of rings.
    Download  
     
    Export citation  
     
    Bookmark   3 citations