Switch to: Citations

Add references

You must login to add references.
  1. Interpolation properties of superintuitionistic logics.Larisa L. Maksimova - 1979 - Studia Logica 38 (4):419 - 428.
    A family of prepositional logics is considered to be intermediate between the intuitionistic and classical ones. The generalized interpolation property is defined and proved is the following.Theorem on interpolation. For every intermediate logic L the following statements are equivalent:(i) Craig's interpolation theorem holds in L, (ii) L possesses the generalized interpolation property, (iii) Robinson's consistency statement is true in L.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Halldén-completeness by gluing of Kripke frames.J. F. A. K. van Benthem & I. L. Humberstone - 1983 - Notre Dame Journal of Formal Logic 24 (4):426-430.
    We give in this paper a sufficient condition, cast in semantic terms, for Hallden-completeness in normal modal logics, a modal logic being said to be Hallden-complete (or Ήallden-reasonable') just in case for any disjunctive formula provable in the logic, where the disjuncts have no propositional variables in common, one or other of those disjuncts is provable in the logic.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The disjunction property of intermediate propositional logics.Alexander Chagrov & Michael Zakharyashchev - 1991 - Studia Logica 50 (2):189 - 216.
    This paper is a survey of results concerning the disjunction property, Halldén-completeness, and other related properties of intermediate prepositional logics and normal modal logics containing S4.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Eine Unableitbarkeitsbeweismethode für den intuitionistischen Aussagenkalkul.G. Kreisel - 1957 - Archive for Mathematical Logic 3 (3-4):74.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • (2 other versions)The Mathematics of Metamathematics.Donald Monk - 1963 - Journal of Symbolic Logic 32 (2):274-275.
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • (1 other version)Modal Logics Between S 4 and S 5.M. A. E. Dummett & E. J. Lemmon - 1959 - Mathematical Logic Quarterly 5 (14-24):250-264.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • On maximal intermediate logics with the disjunction property.Larisa L. Maksimova - 1986 - Studia Logica 45 (1):69 - 75.
    For intermediate logics, there is obtained in the paper an algebraic equivalent of the disjunction propertyDP. It is proved that the logic of finite binary trees is not maximal among intermediate logics withDP. Introduced is a logicND, which has the only maximal extension withDP, namely, the logicML of finite problems.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Modal companions of intermediate propositional logics.Alexander Chagrov & Michael Zakharyashchev - 1992 - Studia Logica 51 (1):49 - 82.
    This paper is a survey of results concerning embeddings of intuitionistic propositional logic and its extensions into various classical modal systems.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • An ascending chain of S4 logics.Kit Fine - 1974 - Theoria 40 (2):110-116.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Superconstructive Propositional Calculi with Extra Axiom Schemes Containing One Variable.J. G. Anderson - 1972 - Mathematical Logic Quarterly 18 (8-11):113-130.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Intermediate logics with the same disjunctionless fragment as intuitionistic logic.Plerluigi Minari - 1986 - Studia Logica 45 (2):207 - 222.
    Given an intermediate prepositional logic L, denote by L –d its disjuctionless fragment. We introduce an infinite sequence {J n}n1 of propositional formulas, and prove:(1)For any L: L –d =I –d (I=intuitionistic logic) if and only if J n L for every n 1.
    Download  
     
    Export citation  
     
    Bookmark   9 citations