Switch to: References

Add citations

You must login to add citations.
  1. Failure of Completeness in Proof-Theoretic Semantics.Thomas Piecha, Wagner de Campos Sanz & Peter Schroeder-Heister - 2015 - Journal of Philosophical Logic 44 (3):321-335.
    Several proof-theoretic notions of validity have been proposed in the literature, for which completeness of intuitionistic logic has been conjectured. We define validity for intuitionistic propositional logic in a way which is common to many of these notions, emphasizing that an appropriate notion of validity must be closed under substitution. In this definition we consider atomic systems whose rules are not only production rules, but may include rules that allow one to discharge assumptions. Our central result shows that Harrop’s rule (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Truth-Maker Semantics for Intuitionistic Logic.Kit Fine - 2014 - Journal of Philosophical Logic 43 (2-3):549-577.
    I propose a new semantics for intuitionistic logic, which is a cross between the construction-oriented semantics of Brouwer-Heyting-Kolmogorov and the condition-oriented semantics of Kripke. The new semantics shows how there might be a common semantical underpinning for intuitionistic and classical logic and how intuitionistic logic might thereby be tied to a realist conception of the relationship between language and the world.
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • Refutation systems in modal logic.Valentin Goranko - 1994 - Studia Logica 53 (2):299 - 324.
    Complete deductive systems are constructed for the non-valid (refutable) formulae and sequents of some propositional modal logics. Thus, complete syntactic characterizations in the sense of Lukasiewicz are established for these logics and, in particular, purely syntactic decision procedures for them are obtained. The paper also contains some historical remarks and a general discussion on refutation systems.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)A sequence of decidable finitely axiomatizable intermediate logics with the disjunction property.D. M. Gabbay & D. H. J. De Jongh - 1974 - Journal of Symbolic Logic 39 (1):67-78.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)Counting the maximal intermediate constructive logics.Mauro Ferrari & Pierangelo Miglioli - 1993 - Journal of Symbolic Logic 58 (4):1365-1401.
    A proof is given that the set of maximal intermediate propositional logics with the disjunction property and the set of maximal intermediate predicate logics with the disjunction property and the explicit definability property have the power of continuum. To prove our results, we introduce various notions which might be interesting by themselves. In particular, we illustrate a method to generate wide sets of pairwise "constructively incompatible constructive logics". We use a notion of "semiconstructive" logic and define wide sets of "constructive" (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (2 other versions)Rejection in Łukasiewicz's and Słupecki's Sense.Wybraniec-Skardowska Urszula - 2018 - In Urszula Wybraniec-Skardowska & Ángel Garrido (eds.), The Lvov-Warsaw School. Past and Present. Cham, Switzerland: Springer- Birkhauser,. pp. 575-597.
    The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Łukasiewicz. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced by Łukasiewicz and developed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Rejection in Łukasiewicz's and Słupecki' Sense.Urszula Wybraniec-Skardowska - 2018 - Lvov-Warsaw School. Past and Present.
    The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Łukasiewicz [20]. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions [22, 23]. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced by Łukasiewicz (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A method to single out maximal propositional logics with the disjunction property II.Mauro Ferrari & Pierangelo Miglioli - 1995 - Annals of Pure and Applied Logic 76 (2):117-168.
    This is the second part of a paper devoted to the study of the maximal intermediate propositional logics with the disjunction property , whose first part has appeared in this journal with the title “A method to single out maximal propositional logics with the disjunction property I”. In the first part we have explained the general results upon which a method to single out maximal constructive logics is based and have illustrated such a method by exhibiting the Kripke semantics of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Intermediate Logics and the de Jongh property.Dick de Jongh, Rineke Verbrugge & Albert Visser - 2011 - Archive for Mathematical Logic 50 (1-2):197-213.
    We prove that all extensions of Heyting Arithmetic with a logic that has the finite frame property possess the de Jongh property.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (2 other versions)Rejection in Łukasiewicz's and Słupecki's Sense.Urszula Wybraniec-Skardowska - 2018 - In Urszula Wybraniec-Skardowska & Ángel Garrido (eds.), The Lvov-Warsaw School. Past and Present. Cham, Switzerland: Springer- Birkhauser,. pp. 575-597.
    The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Łukasiewicz [20]. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions [22, 23]. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced by Łukasiewicz (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Intermediate Logics and the de Jongh property.Dick Jongh, Rineke Verbrugge & Albert Visser - 2011 - Archive for Mathematical Logic 50 (1-2):197-213.
    We prove that all extensions of Heyting Arithmetic with a logic that has the finite frame property possess the de Jongh property.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The decidability of the Kreisel-Putnam system.Dov M. Gabbay - 1970 - Journal of Symbolic Logic 35 (3):431-437.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On maximal intermediate predicate constructive logics.Alessandro Avellone, Camillo Fiorentini, Paolo Mantovani & Pierangelo Miglioli - 1996 - Studia Logica 57 (2-3):373 - 408.
    We extend to the predicate frame a previous characterization of the maximal intermediate propositional constructive logics. This provides a technique to get maximal intermediate predicate constructive logics starting from suitable sets of classically valid predicate formulae we call maximal nonstandard predicate constructive logics. As an example of this technique, we exhibit two maximal intermediate predicate constructive logics, yet leaving open the problem of stating whether the two logics are distinct. Further properties of these logics will be also investigated.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Context of Inference.Curtis Franks - 2018 - History and Philosophy of Logic 39 (4):365-395.
    There is an ambiguity in the concept of deductive validity that went unnoticed until the middle of the twentieth century. Sometimes an inference rule is called valid because its conclusion is a theorem whenever its premises are. But often something different is meant: The rule's conclusion follows from its premises even in the presence of other assumptions. In many logical environments, these two definitions pick out the same rules. But other environments are context-sensitive, and in these environments the second notion (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inquisitive Logic.Ivano Ciardelli & Floris Roelofsen - 2011 - Journal of Philosophical Logic 40 (1):55-94.
    This paper investigates a generalized version of inquisitive semantics. A complete axiomatization of the associated logic is established, the connection with intuitionistic logic and several intermediate logics is explored, and the generalized version of inquisitive semantics is argued to have certain advantages over the system that was originally proposed by Groenendijk (2009) and Mascarenhas (2009).
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Admissibility and refutation: some characterisations of intermediate logics.Jeroen P. Goudsmit - 2014 - Archive for Mathematical Logic 53 (7-8):779-808.
    Refutation systems are formal systems for inferring the falsity of formulae. These systems can, in particular, be used to syntactically characterise logics. In this paper, we explore the close connection between refutation systems and admissible rules. We develop technical machinery to construct refutation systems, employing techniques from the study of admissible rules. Concretely, we provide a refutation system for the intermediate logics of bounded branching, known as the Gabbay–de Jongh logics. We show that this gives a characterisation of these logics (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Metacompleteness of Substructural Logics.Takahiro Seki - 2012 - Studia Logica 100 (6):1175-1199.
    Metacompleteness is used to prove properties such as the disjunction property and the existence property in the area of relevant logics. On the other hand, the disjunction property of several basic propositional substructural logics over FL has been proved using the cut elimination theorem of sequent calculi and algebraic characterization. The present paper shows that Meyer’s metavaluational technique and Slaney’s metavaluational technique can be applied to basic predicate intuitionistic substructural logics and basic predicate involutive substructural logics, respectively. As a corollary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Deduction Theorem (Before and After Herbrand).Curtis Franks - 2021 - History and Philosophy of Logic 42 (2):129-159.
    Attempts to articulate the real meaning or ultimate significance of a famous theorem comprise a major vein of philosophical writing about mathematics. The subfield of mathematical logic has supplie...
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Should Anti-Realists be Anti-Realists About Anti-Realism?Roy T. Cook - 2014 - Erkenntnis 79 (S2):233-258.
    On the Dummettian understanding, anti-realism regarding a particular discourse amounts to (or at the very least, involves) a refusal to accept the determinacy of the subject matter of that discourse and a corresponding refusal to assert at least some instances of excluded middle (which can be understood as expressing this determinacy of subject matter). In short: one is an anti-realist about a discourse if and only if one accepts intuitionistic logic as correct for that discourse. On careful examination, the strongest (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The disjunction property of intermediate propositional logics.Alexander Chagrov & Michael Zakharyashchev - 1991 - Studia Logica 50 (2):189 - 216.
    This paper is a survey of results concerning the disjunction property, Halldén-completeness, and other related properties of intermediate prepositional logics and normal modal logics containing S4.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Advances in Proof-Theoretic Semantics.Peter Schroeder-Heister & Thomas Piecha (eds.) - 2015 - Cham, Switzerland: Springer Verlag.
    This volume is the first ever collection devoted to the field of proof-theoretic semantics. Contributions address topics including the systematics of introduction and elimination rules and proofs of normalization, the categorial characterization of deductions, the relation between Heyting's and Gentzen's approaches to meaning, knowability paradoxes, proof-theoretic foundations of set theory, Dummett's justification of logical laws, Kreisel's theory of constructions, paradoxical reasoning, and the defence of model theory. The field of proof-theoretic semantics has existed for almost 50 years, but the term (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Propositional logics of dependence.Fan Yang & Jouko Väänänen - 2016 - Annals of Pure and Applied Logic 167 (7):557-589.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • On the semantics and logic of declaratives and interrogatives.Ivano Ciardelli, Jeroen Groenendijk & Floris Roelofsen - 2015 - Synthese 192 (6):1689-1728.
    In many natural languages, there are clear syntactic and/or intonational differences between declarative sentences, which are primarily used to provide information, and interrogative sentences, which are primarily used to request information. Most logical frameworks restrict their attention to the former. Those that are concerned with both usually assume a logical language that makes a clear syntactic distinction between declaratives and interrogatives, and usually assign different types of semantic values to these two types of sentences. A different approach has been taken (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Decidability of admissibility: On a problem by Friedman and its solution by Rybakov.Jeroen P. Goudsmit - 2021 - Bulletin of Symbolic Logic 27 (1):1-38.
    Rybakov proved that the admissible rules of $\mathsf {IPC}$ are decidable. We give a proof of the same theorem, using the same core idea, but couched in the many notions that have been developed in the mean time. In particular, we illustrate how the argument can be interpreted as using refinements of the notions of exactness and extendibility.
    Download  
     
    Export citation  
     
    Bookmark  
  • Decidability of Admissibility: On a Problem by Friedman and its Solution by Rybakov.Jeroen P. Goudsmit - 2021 - Bulletin of Symbolic Logic 27 (1):1-38.
    Rybakov (1984a) proved that the admissible rules of IPC are decidable. We give a proof of the same theorem, using the same core idea, but couched in the many notions that have been developed in the mean time. In particular, we illustrate how the argument can be interpreted as using refinements of the notions of exactness and extendibility.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the extension of intuitionistic propositional logic with Kreisel-Putnam's and Scott's schemes.Pierluigi Minari - 1986 - Studia Logica 45 (1):55-68.
    LetSKP be the intermediate prepositional logic obtained by adding toI (intuitionistic p.l.) the axiom schemes:S = (( ) ) (Scott), andKP = ()()() (Kreisel-Putnam). Using Kripke's semantics, we prove:1) SKP has the finite model property; 2) SKP has the disjunction property. In the last section of the paper we give some results about Scott's logic S = I+S.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Disjunction and existence under implication in elementary intuitionistic formalisms.S. C. Kleene - 1962 - Journal of Symbolic Logic 27 (1):11-18.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • A method to single out maximal propositional logics with the disjunction property I.Mauro Ferrari & Pierangelo Miglioli - 1995 - Annals of Pure and Applied Logic 76 (1):1-46.
    This is the first part of a paper concerning intermediate propositional logics with the disjunction property which cannot be properly extended into logics of the same kind, and are therefore called maximal. To deal with these logics, we use a method based on the search of suitable nonstandard logics, which has an heuristic content and has allowed us to discover a wide family of logics, as well as to get their maximality proofs in a uniform way. The present part illustrates (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On two problems of Harvey Friedman.Tadeusz Prucnal - 1979 - Studia Logica 38 (3):247 - 262.
    The paper considers certain properties of intermediate and moda propositional logics.The first part contains a proof of the theorem stating that each intermediate logic is closed under the Kreisel-Putnam rule xyz/(xy)(xz).
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Modal dependence logics: axiomatizations and model-theoretic properties.Fan Yang - 2017 - Logic Journal of the IGPL 25 (5):773-805.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A mind of a non-countable set of ideas.Alexander Citkin - 2008 - Logic and Logical Philosophy 17 (1-2):23-39.
    The paper is dedicated to the 80th birthday of the outstanding Russian logician A.V. Kuznetsov. It is addressing a history of the ideas and research conducted by him in non-classical and intermediate logics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Some structure results for propositional calculi.Ronald Harrop - 1965 - Journal of Symbolic Logic 30 (3):271-292.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Intermediate Logics and Visser's Rules.Rosalie Iemhoff - 2005 - Notre Dame Journal of Formal Logic 46 (1):65-81.
    Visser's rules form a basis for the admissible rules of . Here we show that this result can be generalized to arbitrary intermediate logics: Visser's rules form a basis for the admissible rules of any intermediate logic for which they are admissible. This implies that if Visser's rules are derivable for then has no nonderivable admissible rules. We also provide a necessary and sufficient condition for the admissibility of Visser's rules. We apply these results to some specific intermediate logics and (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Intermediate logics and factors of the Medvedev lattice.Andrea Sorbi & Sebastiaan A. Terwijn - 2008 - Annals of Pure and Applied Logic 155 (2):69-85.
    We investigate the initial segments of the Medvedev lattice as Brouwer algebras, and study the propositional logics connected to them.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Information Completeness in Nelson Algebras of Rough Sets Induced by Quasiorders.Jouni Järvinen, Piero Pagliani & Sándor Radeleczki - 2013 - Studia Logica 101 (5):1073-1092.
    In this paper, we give an algebraic completeness theorem for constructive logic with strong negation in terms of finite rough set-based Nelson algebras determined by quasiorders. We show how for a quasiorder R, its rough set-based Nelson algebra can be obtained by applying Sendlewski’s well-known construction. We prove that if the set of all R-closed elements, which may be viewed as the set of completely defined objects, is cofinal, then the rough set-based Nelson algebra determined by the quasiorder R forms (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Canonical formulas for k4. part I: Basic results.Michael Zakharyaschev - 1992 - Journal of Symbolic Logic 57 (4):1377-1402.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • A proof-theoretical analysis of semiconstructive intermediate theories.Mauro Ferrari & Camillo Fiorentini - 2003 - Studia Logica 73 (1):21 - 49.
    In the 80's Pierangelo Miglioli, starting from motivations in the framework of Abstract Data Types and Program Synthesis, introduced semiconstructive theories, a family of large subsystems of classical theories that guarantee the computability of functions and predicates represented by suitable formulas. In general, the above computability results are guaranteed by algorithms based on a recursive enumeration of the theorems of the whole system. In this paper we present a family of semiconstructive systems, we call uniformly semiconstructive, that provide computational procedures (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The undecidability of the disjunction property of propositional logics and other related problems.Alexander Chagrov & Michael Zakharyaschev - 1993 - Journal of Symbolic Logic 58 (3):967-1002.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)The decidability of certain intermediate propositional logics.C. G. Mckay - 1968 - Journal of Symbolic Logic 33 (2):258-264.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • An infinite class of maximal intermediate propositional logics with the disjunction property.Pierangelo Miglioli - 1992 - Archive for Mathematical Logic 31 (6):415-432.
    Infinitely many intermediate propositional logics with the disjunction property are defined, each logic being characterized both in terms of a finite axiomatization and in terms of a Kripke semantics with the finite model property. The completeness theorems are used to prove that any two logics are constructively incompatible. As a consequence, one deduces that there are infinitely many maximal intermediate propositional logics with the disjunction property.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • European Summer Meeting of the Association for Symbolic Logic.E. -J. Thiele - 1992 - Journal of Symbolic Logic 57 (1):282-351.
    Download  
     
    Export citation  
     
    Bookmark  
  • A class of decidable intermediate propositional logics.C. G. McKay - 1971 - Journal of Symbolic Logic 36 (1):127-128.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the rules of intermediate logics.Rosalie Iemhoff - 2006 - Archive for Mathematical Logic 45 (5):581-599.
    If the Visser rules are admissible for an intermediate logic, they form a basis for the admissible rules of the logic. How to characterize the admissible rules of intermediate logics for which not all of the Visser rules are admissible is not known. In this paper we give a brief overview of results on admissible rules in the context of intermediate logics. We apply these results to some well-known intermediate logics. We provide natural examples of logics for which the Visser (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations