Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Geometry and motion.Gordon Belot - 2000 - British Journal for the Philosophy of Science 51 (4):561--95.
    I will discuss only one of the several entwined strands of the philosophy of space and time, the question of the relation between the nature of motion and the geometrical structure of the world.1 This topic has many of the virtues of the best philosophy of science. It is of long-standing philosophical interest and has a rich history of connections to problems of physics. It has loomed large in discussions of space and time among contemporary philosophers of science. Furthermore, there (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • On Gravitational Energy in Newtonian Theories.Neil Dewar & James Owen Weatherall - 2018 - Foundations of Physics 48 (5):558-578.
    There are well-known problems associated with the idea of gravitational energy in general relativity. We offer a new perspective on those problems by comparison with Newtonian gravitation, and particularly geometrized Newtonian gravitation. We show that there is a natural candidate for the energy density of a Newtonian gravitational field. But we observe that this quantity is gauge dependent, and that it cannot be defined in the geometrized theory without introducing further structure. We then address a potential response by showing that (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Maxwell Gravitation.Neil Dewar - 2018 - Philosophy of Science 85 (2):249-270.
    This article gives an explicit presentation of Newtonian gravitation on the backdrop of Maxwell space-time, giving a sense in which acceleration is relative in gravitational theory. However, caution is needed: assessing whether this is a robust or interesting sense of the relativity of acceleration depends on some subtle technical issues and on substantive philosophical questions over how to identify the space-time structure of a theory.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • More problems for Newtonian cosmology.David Wallace - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 57:35-40.
    I point out a radical indeterminism in potential-based formulations of Newtonian gravity once we drop the condition that the potential vanishes at infinity. This indeterminism, which is well known in theoretical cosmology but has received little attention in foundational discussions, can be removed only by specifying boundary conditions at all instants of time, which undermines the theory's claim to be fully cosmological, i.e., to apply to the Universe as a whole. A recent alternative formulation of Newtonian gravity due to Saunders (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Newtonian Spacetime Structure in Light of the Equivalence Principle.Eleanor Knox - 2014 - British Journal for the Philosophy of Science 65 (4):863-880.
    I argue that the best spacetime setting for Newtonian gravitation (NG) is the curved spacetime setting associated with geometrized Newtonian gravitation (GNG). Appreciation of the ‘Newtonian equivalence principle’ leads us to conclude that the gravitational field in NG itself is a gauge quantity, and that the freely falling frames are naturally identified with inertial frames. In this context, the spacetime structure of NG is represented not by the flat neo-Newtonian connection usually made explicit in formulations, but by the sum of (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • On the Status of Newtonian Gravitational Radiation.Niels Linnemann & James Read - 2021 - Foundations of Physics 51 (2):1-16.
    We discuss the status of gravitational radiation in Newtonian theories. In order to do so, we consider various options for interpreting the Poisson equation as encoding propagating solutions, reflect on the extent to which limit considerations from general relativity can shed light on the Poisson equation’s conceptual status, and discuss various senses in which the Poisson equation counts as a dynamical equation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Maxwell-Huygens, Newton-Cartan, and Saunders-Knox Space-Times.James Owen Weatherall - 2016 - Philosophy of Science 83 (1):82-92.
    I address a question recently raised by Simon Saunders concerning the relationship between the space-time structure of Newton-Cartan theory and that of what I will call “Maxwell-Huygens space-time.” This discussion will also clarify a connection between Saunders’s work and a recent paper by Eleanor Knox.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The Geometry of Conventionality.James Owen Weatherall & John Byron Manchak - 2014 - Philosophy of Science 81 (2):233-247.
    There is a venerable position in the philosophy of space and time that holds that the geometry of spacetime is conventional, provided one is willing to postulate a “universal force field.” Here we ask a more focused question, inspired by this literature: in the context of our best classical theories of space and time, if one understands “force” in the standard way, can one accommodate different geometries by postulating a new force field? We argue that the answer depends on one’s (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A brief comment on Maxwell[-Huygens] spacetime.James Owen Weatherall - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:34-38.
    I provide an alternative characterization of a "standard of rotation" in the context of classical spacetime structure that does not refer to any covariant derivative operator.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Fundamental and Emergent Geometry in Newtonian Physics.David Wallace - 2020 - British Journal for the Philosophy of Science 71 (1):1-32.
    Using as a starting point recent and apparently incompatible conclusions by Saunders and Knox, I revisit the question of the correct spacetime setting for Newtonian physics. I argue that understood correctly, these two versions of Newtonian physics make the same claims both about the background geometry required to define the theory, and about the inertial structure of the theory. In doing so I illustrate and explore in detail the view—espoused by Knox, and also by Brown —that inertial structure is defined (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Recovering Recovery: On the Relationship between Gauge Symmetry and Trautman Recovery.Nicholas J. Teh - 2018 - Philosophy of Science 85 (2):201-224.
    This article uncovers a foundational relationship between the ‘gauge symmetry’ of a Newton-Cartan theory and the celebrated Trautman Recovery Theorem and explores its implications for recent philosophical work on Newton-Cartan gravitation.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Rethinking Newton’s Principia.Simon Saunders - 2013 - Philosophy of Science 80 (1):22-48.
    It is widely accepted that the notion of an inertial frame is central to Newtonian mechanics and that the correct space-time structure underlying Newton’s methods in Principia is neo-Newtonian or Galilean space-time. I argue to the contrary that inertial frames are not needed in Newton’s theory of motion, and that the right space-time structure for Newton’s Principia requires the notion of parallelism of spatial directions at different times and nothing more. Only relative motions are definable in this framework, never absolute (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Relational concepts of space and time.Julian B. Barbour - 1982 - British Journal for the Philosophy of Science 33 (3):251-274.
    Download  
     
    Export citation  
     
    Bookmark   30 citations