Switch to: Citations

Add references

You must login to add references.
  1. Computational complexity, speedable and levelable sets.Robert I. Soare - 1977 - Journal of Symbolic Logic 42 (4):545-563.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • On complexity properties of recursively enumerable sets.M. Blum & I. Marques - 1973 - Journal of Symbolic Logic 38 (4):579-593.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Theory of Recursive Functions and Effective Computability.Hartley Rogers - 1971 - Journal of Symbolic Logic 36 (1):141-146.
    Download  
     
    Export citation  
     
    Bookmark   602 citations  
  • Recursively Enumerable Sets of Positive Integers and Their Decision Problems.Emil L. Post - 1945 - Journal of Symbolic Logic 10 (1):18-19.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Q1-degrees of c.e. sets.R. Sh Omanadze & Irakli O. Chitaia - 2012 - Archive for Mathematical Logic 51 (5-6):503-515.
    We show that the Q-degree of a hyperhypersimple set includes an infinite collection of Q1-degrees linearly ordered under \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\leq_{Q_1}}$$\end{document} with order type of the integers and consisting entirely of hyperhypersimple sets. Also, we prove that the c.e. Q1-degrees are not an upper semilattice. The main result of this paper is that the Q1-degree of a hemimaximal set contains only one c.e. 1-degree. Analogous results are valid for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Hyperhypersimple sets and Q1 -reducibility.Irakli Chitaia - 2016 - Mathematical Logic Quarterly 62 (6):590-595.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Theory of recursive functions and effective computability.Hartley Rogers - 1987 - Cambridge: MIT Press.
    Download  
     
    Export citation  
     
    Bookmark   480 citations  
  • Manuel Blum. A Machine-independent theory of the complexity of recursive functions. Journal of the Association for Computing Machinery, vol. 14 (1967), pp. 322–336. [REVIEW]Manuel Blum - 1970 - Journal of Symbolic Logic 34 (4):657-658.
    Download  
     
    Export citation  
     
    Bookmark   24 citations