Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Glivenko like theorems in natural expansions of BCK‐logic.Roberto Cignoli & Antoni Torrens Torrell - 2004 - Mathematical Logic Quarterly 50 (2):111-125.
    The classical Glivenko theorem asserts that a propositional formula admits a classical proof if and only if its double negation admits an intuitionistic proof. By a natural expansion of the BCK‐logic with negation we understand an algebraizable logic whose language is an expansion of the language of BCK‐logic with negation by a family of connectives implicitly defined by equations and compatible with BCK‐congruences. Many of the logics in the current literature are natural expansions of BCK‐logic with negation. The validity of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On Some Varieties of MTL-algebras.Carles Noguera, Francesc Esteva & Joan Gispert - 2005 - Logic Journal of the IGPL 13 (4):443-466.
    The study of perfect, local and bipartite IMTL-algebras presented in [29] is generalized in this paper to the general non-involutive case, i.e. to MTL-algebras. To this end we describe the radical of MTL-algebras and characterize perfect MTL-algebras as those for which the quotient by the radical is isomorphic to the two-element Boolean algebra, and a special class of bipartite MTL-algebras,.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the structure of rotation-invariant semigroups.Sándor Jenei - 2003 - Archive for Mathematical Logic 42 (5):489-514.
    We generalize the notions of Girard algebras and MV-algebras by introducing rotation-invariant semigroups. Based on a geometrical characterization, we present five construction methods which result in rotation-invariant semigroups and in particular, Girard algebras and MV-algebras. We characterize divisibility of MV-algebras, and point out that integrality of Girard algebras follows from their other axioms.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Perfect and bipartite IMTL-algebras and disconnected rotations of prelinear semihoops.Carles Noguera, Francesc Esteva & Joan Gispert - 2005 - Archive for Mathematical Logic 44 (7):869-886.
    IMTL logic was introduced in [12] as a generalization of the infinitely-valued logic of Lukasiewicz, and in [11] it was proved to be the logic of left-continuous t-norms with an involutive negation and their residua. The structure of such t-norms is still not known. Nevertheless, Jenei introduced in [20] a new way to obtain rotation-invariant semigroups and, in particular, IMTL-algebras and left-continuous t-norm with an involutive negation, by means of the disconnected rotation method. In order to give an algebraic interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Metamathematics of Fuzzy Logic.Petr Hájek - 1998 - Dordrecht, Boston and London: Kluwer Academic Publishers.
    This book presents a systematic treatment of deductive aspects and structures of fuzzy logic understood as many valued logic sui generis. It aims to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named ‘fuzzy inference’ can be naturally understood as logical deduction. It is for mathematicians, logicians, computer scientists, specialists in artificial intelligence and knowledge engineering, and developers of fuzzy logic.
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Hájek basic fuzzy logic and Łukasiewicz infinite-valued logic.Roberto Cignoli & Antoni Torrens - 2003 - Archive for Mathematical Logic 42 (4):361-370.
    Using the theory of BL-algebras, it is shown that a propositional formula ϕ is derivable in Łukasiewicz infinite valued Logic if and only if its double negation ˜˜ϕ is derivable in Hájek Basic Fuzzy logic. If SBL is the extension of Basic Logic by the axiom (φ & (φ→˜φ)) → ψ, then ϕ is derivable in in classical logic if and only if ˜˜ ϕ is derivable in SBL. Axiomatic extensions of Basic Logic are in correspondence with subvarieties of the (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A proof of standard completeness for Esteva and Godo's logic MTL.Sándor Jenei & Franco Montagna - 2002 - Studia Logica 70 (2):183-192.
    In the present paper we show that any at most countable linearly-ordered commutative residuated lattice can be embedded into a commutative residuated lattice on the real unit interval [0, 1]. We use this result to show that Esteva and Godo''s logic MTL is complete with respect to interpretations into commutative residuated lattices on [0, 1]. This solves an open problem raised in.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • (1 other version)Free l-algebras.Alfred Horn - 1969 - Journal of Symbolic Logic 34 (3):475-480.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On the standard and rational completeness of some axiomatic extensions of the monoidal t-Norm logic.Francesc Esteva, Joan Gispert, Lluís Godo & Franco Montagna - 2002 - Studia Logica 71 (2):199 - 226.
    The monoidal t-norm based logic MTL is obtained from Hájek''s Basic Fuzzy logic BL by dropping the divisibility condition for the strong (or monoidal) conjunction. Recently, Jenei and Montgana have shown MTL to be standard complete, i.e. complete with respect to the class of residuated lattices in the real unit interval [0,1] defined by left-continuous t-norms and their residua. Its corresponding algebraic semantics is given by pre-linear residuated lattices. In this paper we address the issue of standard and rational completeness (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations