Switch to: References

Citations of:

Metamathematics of Fuzzy Logic

Dordrecht, Boston and London: Kluwer Academic Publishers (1998)

Add citations

You must login to add citations.
  1. The Nature and Logic of Vagueness.Marian Călborean - 2020 - Dissertation, University of Bucharest
    The PhD thesis advances a new approach to vagueness as dispersion, comparing it with the main philosophical theories of vagueness in the analytic tradition.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modalité et changement: δύναμις et cinétique aristotélicienne.Marion Florian - 2023 - Dissertation, Université Catholique de Louvain
    The present PhD dissertation aims to examine the relation between modality and change in Aristotle’s metaphysics. -/- On the one hand, Aristotle supports his modal realism (i.e., worldly objects have modal properties - potentialities and essences - that ground the ascriptions of possibility and necessity) by arguing that the rejection of modal realism makes change inexplicable, or, worse, banishes it from the realm of reality. On the other hand, the Stagirite analyses processes by means of modal notions (‘change is the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • These Degrees go to Eleven: Fuzzy Logics and Gradable Predicates.Petr Cintula, Berta Grimau, Carles Noguera & Nicholas J. J. Smith - 2022 - Synthese 200 (445):1-38.
    In the literature on vagueness one finds two very different kinds of degree theory. The dominant kind of account of gradable adjectives in formal semantics and linguistics is built on an underlying framework involving bivalence and classical logic: its degrees are not degrees of truth. On the other hand, fuzzy logic based theories of vagueness—largely absent from the formal semantics literature but playing a significant role in both the philosophical literature on vagueness and in the contemporary logic literature—are logically nonclassical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Many-valued logic and sequence arguments in value theory.Simon Knutsson - 2021 - Synthese 199 (3-4):10793-10825.
    Some find it plausible that a sufficiently long duration of torture is worse than any duration of mild headaches. Similarly, it has been claimed that a million humans living great lives is better than any number of worm-like creatures feeling a few seconds of pleasure each. Some have related bad things to good things along the same lines. For example, one may hold that a future in which a sufficient number of beings experience a lifetime of torture is bad, regardless (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Kripke Semantics for Fuzzy Logics.Saeed Salehi - 2018 - Soft Computing 22 (3):839–844.
    Kripke frames (and models) provide a suitable semantics for sub-classical logics; for example, intuitionistic logic (of Brouwer and Heyting) axiomatizes the reflexive and transitive Kripke frames (with persistent satisfaction relations), and the basic logic (of Visser) axiomatizes transitive Kripke frames (with persistent satisfaction relations). Here, we investigate whether Kripke frames/models could provide a semantics for fuzzy logics. For each axiom of the basic fuzzy logic, necessary and sufficient conditions are sought for Kripke frames/models which satisfy them. It turns out that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Advances in Modal Logic, Vol. 13.Nicola Olivetti & Rineke Verbrugge (eds.) - 2020 - College Publications.
    Download  
     
    Export citation  
     
    Bookmark  
  • You don't say! Lying, asserting and insincerity.Neri Marsili - 2017 - Dissertation, University of Sheffield
    This thesis addresses philosophical problems concerning improper assertions. The first part considers the issue of defining lying: here, against a standard view, I argue that a lie need not intend to deceive the hearer. I define lying as an insincere assertion, and then resort to speech act theory to develop a detailed account of what an assertion is, and what can make it insincere. Even a sincere assertion, however, can be improper (e.g., it can be false, or unwarranted): in the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Truth without standard models: some conceptual problems reloaded.Eduardo Barrio & Bruno Da Ré - 2017 - Journal of Applied Non-Classical Logics 28 (1):122-139.
    A theory of truth is usually demanded to be consistent, but -consistency is less frequently requested. Recently, Yatabe has argued in favour of -inconsistent first-order theories of truth, minimising their odd consequences. In view of this fact, in this paper, we present five arguments against -inconsistent theories of truth. In order to bring out this point, we will focus on two very well-known -inconsistent theories of truth: the classical theory of symmetric truth FS and the non-classical theory of naïve truth (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Taking Degrees of Truth Seriously.Josep Maria Font - 2009 - Studia Logica 91 (3):383-406.
    This is a contribution to the discussion on the role of truth degrees in manyvalued logics from the perspective of abstract algebraic logic. It starts with some thoughts on the so-called Suszko’s Thesis (that every logic is two-valued) and on the conception of semantics that underlies it, which includes the truth-preserving notion of consequence. The alternative usage of truth values in order to define logics that preserve degrees of truth is presented and discussed. Some recent works studying these in the (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Borel on the Heap.Paul Égré & Anouk Barberousse - 2014 - Erkenntnis 79 (5):1043-1079.
    In 1907 Borel published a remarkable essay on the paradox of the Heap (“Un paradoxe économique: le sophisme du tas de blé et les vérités statistiques”), in which Borel proposes what is likely the first statistical account of vagueness ever written, and where he discusses the practical implications of the sorites paradox, including in economics. Borel’s paper was integrated in his book Le Hasard, published 1914, but has gone mostly unnoticed since its publication. One of the originalities of Borel’s essay (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Lying as a scalar phenomenon.Neri Marsili - 2014 - In Sibilla Cantarini, Werner Abraham & Elisabeth Leiss (eds.), Certainty-Uncertainty Âe and the Attitudinal Space in Between. John Benjamins Publishing.
    In the philosophical debate on lying, there has generally been agreement that either the speaker believes that his statement is false, or he believes that his statement is true. This article challenges this assumption, and argues that lying is a scalar phenomenon that allows for a number of intermediate cases – the most obvious being cases of uncertainty. The first section shows that lying can involve beliefs about graded truth values (fuzzy lies) and graded beliefs (graded-belief lies). It puts forward (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Fuzzy Galois Connections.Radim Bêlohlávek - 1999 - Mathematical Logic Quarterly 45 (4):497-504.
    The concept of Galois connection between power sets is generalized from the point of view of fuzzy logic. Studied is the case where the structure of truth values forms a complete residuated lattice. It is proved that fuzzy Galois connections are in one-to-one correspondence with binary fuzzy relations. A representation of fuzzy Galois connections by Galois connections is provided.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Commutative basic algebras and non-associative fuzzy logics.Michal Botur & Radomír Halaš - 2009 - Archive for Mathematical Logic 48 (3-4):243-255.
    Several investigations in probability theory and the theory of expert systems show that it is important to search for some reasonable generalizations of fuzzy logics (e.g. Łukasiewicz, Gödel or product logic) having a non-associative conjunction. In the present paper, we offer a non-associative fuzzy logic L CBA having as an equivalent algebraic semantics lattices with section antitone involutions satisfying the contraposition law, so-called commutative basic algebras. The class (variety) CBA of commutative basic algebras was intensively studied in several recent papers (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A characterization of MV-algebras free over finite distributive lattices.Vincenzo Marra - 2008 - Archive for Mathematical Logic 47 (3):263-276.
    Mundici has recently established a characterization of free finitely generated MV-algebras similar in spirit to the representation of the free Boolean algebra with a countably infinite set of free generators as any Boolean algebra that is countable and atomless. No reference to universal properties is made in either theorem. Our main result is an extension of Mundici’s theorem to the whole class of MV-algebras that are free over some finite distributive lattice.
    Download  
     
    Export citation  
     
    Bookmark  
  • Weakly Implicative (Fuzzy) Logics I: Basic Properties. [REVIEW]Petr Cintula - 2006 - Archive for Mathematical Logic 45 (6):673-704.
    This paper presents two classes of propositional logics (understood as a consequence relation). First we generalize the well-known class of implicative logics of Rasiowa and introduce the class of weakly implicative logics. This class is broad enough to contain many “usual” logics, yet easily manageable with nice logical properties. Then we introduce its subclass–the class of weakly implicative fuzzy logics. It contains the majority of logics studied in the literature under the name fuzzy logic. We present many general theorems for (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Generalized Bosbach and Riečan states on nucleus-based-Glivenko residuated lattices.Bin Zhao & Hongjun Zhou - 2013 - Archive for Mathematical Logic 52 (7-8):689-706.
    Bosbach and Riečan states on residuated lattices both are generalizations of probability measures on Boolean algebras. Just from the observation that both of them can be defined by using the canonical structure of the standard MV-algebra on the unit interval [0, 1], generalized Riečan states and two types of generalized Bosbach states on residuated lattices were recently introduced by Georgescu and Mureşan through replacing the standard MV-algebra with arbitrary residuated lattices as codomains. In the present paper, the Glivenko theorem is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Free Algebras in Varieties of Glivenko MTL-Algebras Satisfying the Equation 2(x²) = (2x)².Roberto Cignoli & Antoni Torrens Torrell - 2006 - Studia Logica 83 (1-3):157 - 181.
    The aim of this paper is to give a description of the free algebras in some varieties of Glivenko MTL-algebras having the Boolean retraction property. This description is given (generalizing the results of [9]) in terms of weak Boolean products over Cantor spaces. We prove that in some cases the stalks can be obtained in a constructive way from free kernel DL-algebras, which are the maximal radical of directly indecomposable Glivenko MTL-algebras satisfying the equation in the title. We include examples (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • What Is Graded Membership?Lieven Decock & Igor Douven - 2012 - Noûs 48 (4):653-682.
    It has seemed natural to model phenomena related to vagueness in terms of graded membership. However, so far no satisfactory answer has been given to the question of what graded membership is nor has any attempt been made to describe in detail a procedure for determining degrees of membership. We seek to remedy these lacunae by building on recent work on typicality and graded membership in cognitive science and combining some of the results obtained there with a version of the (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Generalized probabilism: Dutch books and accuracy domi- nation.J. Robert G. Williams - 2012 - Journal of Philosophical Logic 41 (5):811-840.
    Jeff Paris proves a generalized Dutch Book theorem. If a belief state is not a generalized probability then one faces ‘sure loss’ books of bets. In Williams I showed that Joyce’s accuracy-domination theorem applies to the same set of generalized probabilities. What is the relationship between these two results? This note shows that both results are easy corollaries of the core result that Paris appeals to in proving his dutch book theorem. We see that every point of accuracy-domination defines a (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Non-classical Metatheory for Non-classical Logics.Andrew Bacon - 2013 - Journal of Philosophical Logic 42 (2):335-355.
    A number of authors have objected to the application of non-classical logic to problems in philosophy on the basis that these non-classical logics are usually characterised by a classical metatheory. In many cases the problem amounts to more than just a discrepancy; the very phenomena responsible for non-classicality occur in the field of semantics as much as they do elsewhere. The phenomena of higher order vagueness and the revenge liar are just two such examples. The aim of this paper is (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Some (non)tautologies of łukasiewicz and product logic.Petr Hájek - 2010 - Review of Symbolic Logic 3 (2):273-278.
    The paper presents a particular example of a formula which is a standard tautology of Łukasiewicz but not its general tautology; an example of a model in which the formula is not true is explicitly constructed. Analogous example of a formula and its model is given for product logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • An elementary belief function logic.Didier Dubois, Lluis Godo & Henri Prade - 2023 - Journal of Applied Non-Classical Logics 33 (3-4):582-605.
    1. There are two distinct lines of research that aim at modelling belief and knowledge: modal logic and uncertainty theories. Modal logic extends classical logic by introducing knowledge or belief...
    Download  
     
    Export citation  
     
    Bookmark  
  • The Hahn Embedding Theorem for a Class of Residuated Semigroups.Sándor Jenei - 2020 - Studia Logica 108 (6):1161-1206.
    Hahn’s embedding theorem asserts that linearly ordered abelian groups embed in some lexicographic product of real groups. Hahn’s theorem is generalized to a class of residuated semigroups in this paper, namely, to odd involutive commutative residuated chains which possess only finitely many idempotent elements. To this end, the partial lexicographic product construction is introduced to construct new odd involutive commutative residuated lattices from a pair of odd involutive commutative residuated lattices, and a representation theorem for odd involutive commutative residuated chains (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Varying interpolation and amalgamation in polyadic MV-algebras.Tarek Sayed Ahmed - 2015 - Journal of Applied Non-Classical Logics 25 (2):140-192.
    We prove several interpolation theorems for many-valued infinitary logic with quantifiers by studying expansions of MV-algebras in the spirit of polyadic and cylindric algebras. We prove for various reducts of polyadic MV-algebras of infinite dimensions that if is the free algebra in the given signature,, is in the subalgebra of generated by, is in the subalgebra of generated by and, then there exists an interpolant in the subalgebra generated by and such that. We call this a varying interpolation property because (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Undead argument: the truth-functionality objection to fuzzy theories of vagueness.Nicholas J. J. Smith - 2017 - Synthese 194 (10):3761–3787.
    From Fine and Kamp in the 70’s—through Osherson and Smith in the 80’s, Williamson, Kamp and Partee in the 90’s and Keefe in the 00’s—up to Sauerland in the present decade, the objection continues to be run that fuzzy logic based theories of vagueness are incompatible with ordinary usage of compound propositions in the presence of borderline cases. These arguments against fuzzy theories have been rebutted several times but evidently not put to rest. I attempt to do so in this (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Effectiveness in RPL, with applications to continuous logic.Farzad Didehvar, Kaveh Ghasemloo & Massoud Pourmahdian - 2010 - Annals of Pure and Applied Logic 161 (6):789-799.
    In this paper, we introduce a foundation for computable model theory of rational Pavelka logic and continuous logic, and prove effective versions of some related theorems in model theory. We show how to reduce continuous logic to rational Pavelka logic. We also define notions of computability and decidability of a model for logics with computable, but uncountable, set of truth values; we show that provability degree of a formula with respect to a linear theory is computable, and use this to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Generalized Bosbach states: part I. [REVIEW]Lavinia Corina Ciungu, George Georgescu & Claudia Mureşan - 2013 - Archive for Mathematical Logic 52 (3-4):335-376.
    States have been introduced on commutative and non-commutative algebras of fuzzy logics as functions defined on these algebras with values in [0,1]. Starting from the observation that in the definition of Bosbach states there intervenes the standard MV-algebra structure of [0,1], in this paper we introduce Bosbach states defined on residuated lattices with values in residuated lattices. We are led to two types of generalized Bosbach states, with distinct behaviours. Properties of generalized states are useful for the development of an (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pavelka-style completeness in expansions of Łukasiewicz logic.Hector Freytes - 2008 - Archive for Mathematical Logic 47 (1):15-23.
    An algebraic setting for the validity of Pavelka style completeness for some natural expansions of Łukasiewicz logic by new connectives and rational constants is given. This algebraic approach is based on the fact that the standard MV-algebra on the real segment [0, 1] is an injective MV-algebra. In particular the logics associated with MV-algebras with product and with divisible MV-algebras are considered.
    Download  
     
    Export citation  
     
    Bookmark  
  • Distinguishing non-standard natural numbers in a set theory within Łukasiewicz logic.Shunsuke Yatabe - 2007 - Archive for Mathematical Logic 46 (3-4):281-287.
    In ${\mathbf{H}}$ , a set theory with the comprehension principle within Łukasiewicz infinite-valued predicate logic, we prove that a statement which can be interpreted as “there is an infinite descending sequence of initial segments of ω” is truth value 1 in any model of ${\mathbf{H}}$ , and we prove an analogy of Hájek’s theorem with a very simple procedure.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Algebraic Kripke-Style Semantics for Relevance Logics.Eunsuk Yang - 2014 - Journal of Philosophical Logic 43 (4):803-826.
    This paper deals with one kind of Kripke-style semantics, which we shall call algebraic Kripke-style semantics, for relevance logics. We first recall the logic R of relevant implication and some closely related systems, their corresponding algebraic structures, and algebraic completeness results. We provide simpler algebraic completeness proofs. We then introduce various types of algebraic Kripke-style semantics for these systems and connect them with algebraic semantics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Truth values.Yaroslav Shramko - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Giles’s Game and the Proof Theory of Łukasiewicz Logic.Christian G. Fermüller & George Metcalfe - 2009 - Studia Logica 92 (1):27 - 61.
    In the 1970s, Robin Giles introduced a game combining Lorenzen-style dialogue rules with a simple scheme for betting on the truth of atomic statements, and showed that the existence of winning strategies for the game corresponds to the validity of formulas in Łukasiewicz logic. In this paper, it is shown that ‘disjunctive strategies’ for Giles’s game, combining ordinary strategies for all instances of the game played on the same formula, may be interpreted as derivations in a corresponding proof system. In (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Many-valued logic.Siegfried Gottwald - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Probability and nonclassical logic.Robert Williams - 2016 - In Alan Hájek & Christopher Hitchcock (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Many-valued modal logics: A simple approach: Many-valued modal logics: A simple approach.Graham Priest - 2008 - Review of Symbolic Logic 1 (2):190-203.
    1.1 In standard modal logics, the worlds are 2-valued in the following sense: there are 2 values that a sentence may take at a world. Technically, however, there is no reason why this has to be the case. The worlds could be many-valued. This paper presents one simple approach to a major family of many-valued modal logics, together with an illustration of why this family is philosophically interesting.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • What Verities May Be.Igor Douven & Lieven Decock - 2017 - Mind 126 (502):386-428.
    Edgington has proposed a solution to the sorites paradox in terms of ‘verities’, which she defines as degrees of closeness to clear truth. Central to her solution is the assumption that verities are formally probabilities. She is silent on what verities might derive from and on why they should be probabilities. This paper places Edgington’s solution in the framework of a spatial approach to conceptualization, arguing that verities may be conceived of as deriving from how our concepts relate to each (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • On the Closure Properties of the Class of Full G-models of a Deductive System.Josep Maria Font, Ramon Jansana & Don Pigozzi - 2006 - Studia Logica 83 (1-3):215-278.
    In this paper we consider the structure of the class FGModS of full generalized models of a deductive system S from a universal-algebraic point of view, and the structure of the set of all the full generalized models of S on a fixed algebra A from the lattice-theoretical point of view; this set is represented by the lattice FACSs A of all algebraic closed-set systems C on A such that (A, C) ε FGModS. We relate some properties of these structures (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A modal theorem-preserving translation of a class of three-valued logics of incomplete information.D. Ciucci & D. Dubois - 2013 - Journal of Applied Non-Classical Logics 23 (4):321-352.
    There are several three-valued logical systems that form a scattered landscape, even if all reasonable connectives in three-valued logics can be derived from a few of them. Most papers on this subject neglect the issue of the relevance of such logics in relation with the intended meaning of the third truth-value. Here, we focus on the case where the third truth-value means unknown, as suggested by Kleene. Under such an understanding, we show that any truth-qualified formula in a large range (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Proof by Cases Property and its Variants in Structural Consequence Relations.Petr Cintula & Carles Noguera - 2013 - Studia Logica 101 (4):713-747.
    This paper is a contribution to the study of the rôle of disjunction inAlgebraic Logic. Several kinds of (generalized) disjunctions, usually defined using a suitable variant of the proof by cases property, were introduced and extensively studied in the literature mainly in the context of finitary logics. The goals of this paper are to extend these results to all logics, to systematize the multitude of notions of disjunction (both those already considered in the literature and those introduced in this paper), (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Conjunction-based Sorites: A Misguided Objection to Degree-Theoretic Solutions to Sorites Paradoxes.Merrie Bergmann - 2010 - Journal of Philosophical Logic 39 (1):1-4.
    In 1987, Crispin Wright argued that degree-theoretic solutions to the Sorites paradox fail because the solutions do not work when the paradox is restated using a conjunctive major premise. I show that Wright is incorrect: degree-theoretic solutions also work when the paradox is stated with a conjunctive major premise.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Decidability Status of Fuzzy A ℒ C with General Concept Inclusions.Franz Baader, Stefan Borgwardt & Rafael Peñaloza - 2015 - Journal of Philosophical Logic 44 (2):117-146.
    The combination of Fuzzy Logics and Description Logics has been investigated for at least two decades because such fuzzy DLs can be used to formalize imprecise concepts. In particular, tableau algorithms for crisp Description Logics have been extended to reason also with their fuzzy counterparts. It has turned out, however, that in the presence of general concept inclusion axioms this extension is less straightforward than thought. In fact, a number of tableau algorithms claimed to deal correctly with fuzzy DLs with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fuzzy power structures.George Georgescu - 2008 - Archive for Mathematical Logic 47 (3):233-261.
    Power structures are obtained by lifting some mathematical structure (operations, relations, etc.) from an universe X to its power set ${\mathcal{P}(X)}$ . A similar construction provides fuzzy power structures: operations and fuzzy relations on X are extended to operations and fuzzy relations on the set ${\mathcal{F}(X)}$ of fuzzy subsets of X. In this paper we study how this construction preserves some properties of fuzzy sets and fuzzy relations (similarity, congruence, etc.). We define the notions of good, very good, Hoare good (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fuzzy modal-like approximation operators based on double residuated lattices.Anna Maria Radzikowska - 2006 - Journal of Applied Non-Classical Logics 16 (3-4):485-506.
    In many applications we have a set of objects together with their properties. Since the available information is usually incomplete and/or imprecise, the true knowledge about subsets of objects can be determined approximately only. In this paper, we discuss a fuzzy generalisation of two pairs of relation-based operators suitable for fuzzy set approximations, which have been recently investigated by Düntsch and Gediga. Double residuated lattices, introduced by Orlowska and Radzikowska, are taken as basic algebraic structures. Main properties of these operators (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A proof of standard completeness for Esteva and Godo's logic MTL.Sándor Jenei & Franco Montagna - 2002 - Studia Logica 70 (2):183-192.
    In the present paper we show that any at most countable linearly-ordered commutative residuated lattice can be embedded into a commutative residuated lattice on the real unit interval [0, 1]. We use this result to show that Esteva and Godo''s logic MTL is complete with respect to interpretations into commutative residuated lattices on [0, 1]. This solves an open problem raised in.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Omitting types for infinitary [ 0, 1 ] -valued logic.Christopher J. Eagle - 2014 - Annals of Pure and Applied Logic 165 (3):913-932.
    We describe an infinitary logic for metric structures which is analogous to Lω1,ω. We show that this logic is capable of expressing several concepts from analysis that cannot be expressed in finitary continuous logic. Using topological methods, we prove an omitting types theorem for countable fragments of our infinitary logic. We use omitting types to prove a two-cardinal theorem, which yields a strengthening of a result of Ben Yaacov and Iovino concerning separable quotients of Banach spaces.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On łukasiewicz's four-valued modal logic.Josep Maria Font & Petr Hájek - 2002 - Studia Logica 70 (2):157-182.
    ukasiewicz''s four-valued modal logic is surveyed and analyzed, together with ukasiewicz''s motivations to develop it. A faithful interpretation of it in classical (non-modal) two-valued logic is presented, and some consequences are drawn concerning its classification and its algebraic behaviour. Some counter-intuitive aspects of this logic are discussed in the light of the presented results, ukasiewicz''s own texts, and related literature.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • A graded semantics for counterfactuals.Libor Běhounek & Ondrej Majer - 2021 - Synthese 199 (5-6):11963-11994.
    This article presents an extension of Lewis’ analysis of counterfactuals to a graded framework. Unlike standard graded approaches, which use the probabilistic framework, we employ that of many-valued logics. Our principal goal is to provide an adequate analysis of the main background notion of Lewis’ approach—the one of the similarity of possible worlds. We discuss the requirements imposed on the analysis of counterfactuals by the imprecise character of similarity and concentrate in particular on robustness, i.e., the requirement that small changes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fuzzy intensional semantics.Libor Běhounek & Ondrej Majer - 2018 - Journal of Applied Non-Classical Logics 28 (4):348-388.
    The study of weighted structures is one of the important trends in recent computer science. The aim of the article is to provide a weighted, many-valued version of classical intensional semantics formalised in the framework of higher-order fuzzy logics. We illustrate the apparatus on several variants of fuzzy S5-style modalities. The formalism is applicable to a broad array of weighted intensional notions, including alethic, epistemic, or probabilistic modalities, generalised quantifiers, counterfactual conditionals, dynamic and non-monotonic logics, and some more.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)A geo-logical solution to the lottery paradox, with applications to conditional logic.Hanti Lin & Kevin Kelly - 2012 - Synthese 186 (2):531-575.
    We defend a set of acceptance rules that avoids the lottery paradox, that is closed under classical entailment, and that accepts uncertain propositions without ad hoc restrictions. We show that the rules we recommend provide a semantics that validates exactly Adams’ conditional logic and are exactly the rules that preserve a natural, logical structure over probabilistic credal states that we call probalogic. To motivate probalogic, we first expand classical logic to geo-logic, which fills the entire unit cube, and then we (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Poset Products as Relational Models.Wesley Fussner - 2021 - Studia Logica 110 (1):95-120.
    We introduce a relational semantics based on poset products, and provide sufficient conditions guaranteeing its soundness and completeness for various substructural logics. We also demonstrate that our relational semantics unifies and generalizes two semantics already appearing in the literature: Aguzzoli, Bianchi, and Marra’s temporal flow semantics for Hájek’s basic logic, and Lewis-Smith, Oliva, and Robinson’s semantics for intuitionistic Łukasiewicz logic. As a consequence of our general theory, we recover the soundness and completeness results of these prior studies in a uniform (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation