Switch to: Citations

Add references

You must login to add references.
  1. Small embedding characterizations for large cardinals.Peter Holy, Philipp Lücke & Ana Njegomir - 2019 - Annals of Pure and Applied Logic 170 (2):251-271.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   334 citations  
  • The combinatorial essence of supercompactness.Christoph Weiß - 2012 - Annals of Pure and Applied Logic 163 (11):1710-1717.
    We introduce combinatorial principles that characterize strong compactness and supercompactness for inaccessible cardinals but also make sense for successor cardinals. Their consistency is established from what is supposedly optimal. Utilizing the failure of a weak version of a square, we show that the best currently known lower bounds for the consistency strength of these principles can be applied.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Greatly Erdős cardinals with some generalizations to the Chang and Ramsey properties.I. Sharpe & P. D. Welch - 2011 - Annals of Pure and Applied Logic 162 (11):863-902.
    • We define a notion of order of indiscernibility type of a structure by analogy with Mitchell order on measures; we use this to define a hierarchy of strong axioms of infinity defined through normal filters, the α-weakly Erdős hierarchy. The filters in this hierarchy can be seen to be generated by sets of ordinals where these indiscernibility orders on structures dominate the canonical functions.• The limit axiom of this is that of greatly Erdős and we use it to calibrate (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A hierarchy of ramsey cardinals.Qi Feng - 1990 - Annals of Pure and Applied Logic 49 (3):257-277.
    Assuming the existence of a measurable cardinal, we define a hierarchy of Ramsey cardinals and a hierarchy of normal filters. We study some combinatorial properties of this hierarchy. We show that this hierarchy is absolute with respect to the Dodd-Jensen core model, extending a result of Mitchell which says that being Ramsey is absolute with respect to the core model.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Easton's theorem for Ramsey and strongly Ramsey cardinals.Brent Cody & Victoria Gitman - 2015 - Annals of Pure and Applied Logic 166 (9):934-952.
    Download  
     
    Export citation  
     
    Bookmark   3 citations