Switch to: Citations

References in:

Type theory

Stanford Encyclopedia of Philosophy (2008)

Add references

You must login to add references.
  1. (1 other version)Mathematical Logic as Based on the Theory of Types.Bertrand Russell - 1908 - American Journal of Mathematics 30 (3):222-262.
    Download  
     
    Export citation  
     
    Bookmark   285 citations  
  • Carnap, completeness, and categoricity:The gabelbarkeitssatz OF 1928. [REVIEW]S. Awodey & A. W. Carus - 2001 - Erkenntnis 54 (2):145-172.
    In 1929 Carnap gave a paper in Prague on Investigations in General Axiomatics; a briefsummary was published soon after. Its subject lookssomething like early model theory, and the mainresult, called the Gabelbarkeitssatz, appears toclaim that a consistent set of axioms is complete justif it is categorical. This of course casts doubt onthe entire project. Though there is no furthermention of this theorem in Carnap''s publishedwritings, his Nachlass includes a largetypescript on the subject, Investigations inGeneral Axiomatics. We examine this work here,showing (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Syntactical and semantical properties of simple type theory.Kurt Schütte - 1960 - Journal of Symbolic Logic 25 (4):305-326.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Selected works in logic.Th Skolem & Jens Erik Fenstad - 1970 - Oslo,: Universitetsforlaget. Edited by Jens Erik Fenstad.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)The formulae-as-types notion of construction.William Alvin Howard - 1980 - In Haskell Curry, Hindley B., Seldin J. Roger & P. Jonathan (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism. Academic Press.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931.Jean Van Heijenoort (ed.) - 1967 - Cambridge, MA, USA: Harvard University Press.
    Gathered together here are the fundamental texts of the great classical period in modern logic. A complete translation of Gottlob Frege's Begriffsschrift--which opened a great epoch in the history of logic by fully presenting propositional calculus and quantification theory--begins the volume, which concludes with papers by Herbrand and by Gödel.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • The theory of types.Alasdair Urquhart - 2003 - In Nicholas Griffin (ed.), The Cambridge companion to Bertrand Russell. New York: Cambridge University Press. pp. 286--309.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Introduction to mathematical philosophy.Bertrand Russell - 1919 - New York: Dover Publications.
    Download  
     
    Export citation  
     
    Bookmark   390 citations  
  • Beweistheorie.K. Schütte - 1960 - Berlin,: Springer.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Types, Sets and Categories.John L. Bell - unknown
    This essay is an attempt to sketch the evolution of type theory from its beginnings early in the last century to the present day. Central to the development of the type concept has been its close relationship with set theory to begin with and later its even more intimate relationship with category theory. Since it is effectively impossible to describe these relationships (especially in regard to the latter) with any pretensions to completeness within the space of a comparatively short article, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Completeness and Hauptsatz for second order logic.Dag Prawitz - 1967 - Theoria 33 (3):246-258.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Logic in the 1930s: Type Theory and Model Theory.Georg Schiemer & Erich H. Reck - 2013 - Bulletin of Symbolic Logic 19 (4):433-472.
    In historical discussions of twentieth-century logic, it is typically assumed that model theory emerged within the tradition that adopted first-order logic as the standard framework. Work within the type-theoretic tradition, in the style ofPrincipia Mathematica, tends to be downplayed or ignored in this connection. Indeed, the shift from type theory to first-order logic is sometimes seen as involving a radical break that first made possible the rise of modern model theory. While comparing several early attempts to develop the semantics of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (2 other versions)Principia mathematica.A. N. Whitehead & B. Russell - 1910-1913 - Revue de Métaphysique et de Morale 19 (2):19-19.
    Download  
     
    Export citation  
     
    Bookmark   239 citations  
  • Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I.K. Gödel - 1931 - Monatshefte für Mathematik 38 (1):173--198.
    Download  
     
    Export citation  
     
    Bookmark   252 citations  
  • Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.Kurt Gödel - 1958 - Dialectica 12 (3):280.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Systems of predicative analysis.Solomon Feferman - 1964 - Journal of Symbolic Logic 29 (1):1-30.
    This paper is divided into two parts. Part I provides a resumé of the evolution of the notion of predicativity. Part II describes our own work on the subject.Part I§1. Conceptions of sets.Statements about sets lie at the heart of most modern attempts to systematize all (or, at least, all known) mathematics. Technical and philosophical discussions concerning such systematizations and the underlying conceptions have thus occupied a considerable portion of the literature on the foundations of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • The impact of the lambda calculus in logic and computer science.Henk Barendregt - 1997 - Bulletin of Symbolic Logic 3 (2):181-215.
    One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the representation of reasoning and the resulting systems of computer mathematics on the other hand.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (2 other versions)The Principles of Mathematics.Bertrand Russell - 1903 - Revue de Métaphysique et de Morale 11 (4):11-12.
    Download  
     
    Export citation  
     
    Bookmark   822 citations  
  • Notes on constructive mathematics.Per Martin-Löf - 1970 - Stockholm,: Almqvist & Wiksell.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)An introduction to mathematical logic and type theory: to truth through proof.Peter Bruce Andrews - 2002 - Boston: Kluwer Academic Publishers.
    This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Introduction to Higher Order Categorical Logic.Joachim Lambek & Philip J. Scott - 1986 - Cambridge University Press.
    In this book the authors reconcile two different viewpoints of the foundations of mathematics, namely mathematical logic and category theory. In Part I, they show that typed lambda-calculi, a formulation of higher order logic, and cartesian closed categories are essentially the same. In Part II, it is demonstrated that another formulation of higher order logic is closely related to topos theory. Part III is devoted to recursive functions. Numerous applications of the close relationship between traditional logic and the algebraic language (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Limits of Science, Outline of Logic and the Methodology of the Exact Sciences.Leon Chwistek - 1948 - Philosophy 23 (86):283-284.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (2 other versions)My Philosophical Development.B. Russell - 1958 - Hibbert Journal 57:2.
    Download  
     
    Export citation  
     
    Bookmark   97 citations  
  • Theorie des Ensembles.N. Bourbaki - 1959 - Journal of Symbolic Logic 24 (1):71-73.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • (1 other version)Review: Alonzo Church, A Formulation of the Simple Theory of Types. [REVIEW]W. V. Quine - 1940 - Journal of Symbolic Logic 5 (3):114-115.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The undefinability of the set of natural numbers in the ramified Principia.John Myhill - 1974 - In George Nakhnikian (ed.), Bertrand Russell's philosophy. [London]: Duckworth. pp. 19--27.
    Download  
     
    Export citation  
     
    Bookmark   12 citations