Switch to: References

Add citations

You must login to add citations.
  1. Logic in mathematics and computer science.Richard Zach - forthcoming - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger (eds.), Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.
    Logic has pride of place in mathematics and its 20th century offshoot, computer science. Modern symbolic logic was developed, in part, as a way to provide a formal framework for mathematics: Frege, Peano, Whitehead and Russell, as well as Hilbert developed systems of logic to formalize mathematics. These systems were meant to serve either as themselves foundational, or at least as formal analogs of mathematical reasoning amenable to mathematical study, e.g., in Hilbert’s consistency program. Similar efforts continue, but have been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Not Saying What We Shouldn't Have to Say.Shay Logan & Leach-Krouse Graham - 2021 - Australasian Journal of Logic 18 (5):524-568.
    In this paper we introduce a novel way of building arithmetics whose background logic is R. The purpose of doing this is to point in the direction of a novel family of systems that could be candidates for being the infamous R#1/2 that Meyer suggested we look for.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Constructivity and Computability in Historical and Philosophical Perspective.Jacques Dubucs & Michel Bourdeau (eds.) - 2014 - Dordrecht, Netherland: Springer.
    Ranging from Alan Turing’s seminal 1936 paper to the latest work on Kolmogorov complexity and linear logic, this comprehensive new work clarifies the relationship between computability on the one hand and constructivity on the other. The authors argue that even though constructivists have largely shed Brouwer’s solipsistic attitude to logic, there remain points of disagreement to this day. Focusing on the growing pains computability experienced as it was forced to address the demands of rapidly expanding applications, the content maps the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Representation and Reality by Language: How to make a home quantum computer?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics having a remarkable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse formalism 16.Sam Sanders - 2020 - Synthese 197 (2):497-544.
    In his remarkable paper Formalism 64, Robinson defends his eponymous position concerning the foundations of mathematics, as follows:Any mention of infinite totalities is literally meaningless.We should act as if infinite totalities really existed. Being the originator of Nonstandard Analysis, it stands to reason that Robinson would have often been faced with the opposing position that ‘some infinite totalities are more meaningful than others’, the textbook example being that of infinitesimals. For instance, Bishop and Connes have made such claims regarding infinitesimals, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Wilfried Sieg. Hilbert's Programs and Beyond. Oxford: Oxford University Press, 2013. ISBN 978-0-19-537222-9 ; 978-0-19-970715-7 . Pp. xii + 439†. [REVIEW]Oran Magal - 2014 - Philosophia Mathematica 22 (3):417-423.
    Download  
     
    Export citation  
     
    Bookmark  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The development of intuitionistic logic.Mark van Atten - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Gödel, Realism and Mathematical 'Intuition'.Michael Hallett - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 113--131.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)A Free‐Variable Theory of Primitive Recursive Arithmetic.Daniel G. Schwartz - 1987 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 33 (2):147-157.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Unique solutions.Peter Schuster - 2006 - Mathematical Logic Quarterly 52 (6):534-539.
    It is folklore that if a continuous function on a complete metric space has approximate roots and in a uniform manner at most one root, then it actually has a root, which of course is uniquely determined. Also in Bishop's constructive mathematics with countable choice, the general setting of the present note, there is a simple method to validate this heuristic principle. The unique solution even becomes a continuous function in the parameters by a mild modification of the uniqueness hypothesis. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • logicism, intuitionism, and formalism - What has become of them?Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.) - 2008 - Berlin, Germany: Springer.
    The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An indeterminate universe of sets.Chris Scambler - 2020 - Synthese 197 (2):545-573.
    In this paper, I develop a view on set-theoretic ontology I call Universe-Indeterminism, according to which there is a unique but indeterminate universe of sets. I argue that Solomon Feferman’s work on semi-constructive set theories can be adapted to this project, and develop a philosophical motivation for a semi-constructive set theory closely based on Feferman’s but tailored to the Universe-Indeterminist’s viewpoint. I also compare the emergent Universe-Indeterminist view to some more familiar views on set-theoretic ontology.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (2 other versions)Reflection Principles and their Use for Establishing the Complexity of Axiomatic Systems.G. Kreisel & A. Lévy - 1968 - Mathematical Logic Quarterly 14 (7-12):97-142.
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • On the computational content of the Bolzano-Weierstraß Principle.Pavol Safarik & Ulrich Kohlenbach - 2010 - Mathematical Logic Quarterly 56 (5):508-532.
    We will apply the methods developed in the field of ‘proof mining’ to the Bolzano-Weierstraß theorem BW and calibrate the computational contribution of using this theorem in proofs of combinatorial statements. We provide an explicit solution of the Gödel functional interpretation as well as the monotone functional interpretation of BW for the product space Πi ∈ℕ[–ki, ki] . This results in optimal program and bound extraction theorems for proofs based on fixed instances of BW, i.e. for BW applied to fixed (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Jean van Heijenoort’s Contributions to Proof Theory and Its History.Irving H. Anellis - 2012 - Logica Universalis 6 (3-4):411-458.
    Jean van Heijenoort was best known for his editorial work in the history of mathematical logic. I survey his contributions to model-theoretic proof theory, and in particular to the falsifiability tree method. This work of van Heijenoort’s is not widely known, and much of it remains unpublished. A complete list of van Heijenoort’s unpublished writings on tableaux methods and related work in proof theory is appended.
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-principal ultrafilters, program extraction and higher-order reverse mathematics.Alexander P. Kreuzer - 2012 - Journal of Mathematical Logic 12 (1):1250002-.
    We investigate the strength of the existence of a non-principal ultrafilter over fragments of higher-order arithmetic. Let [Formula: see text] be the statement that a non-principal ultrafilter on ℕ exists and let [Formula: see text] be the higher-order extension of ACA0. We show that [Formula: see text] is [Formula: see text]-conservative over [Formula: see text] and thus that [Formula: see text] is conservative over PA. Moreover, we provide a program extraction method and show that from a proof of a strictly (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (2 other versions)Reflection Principles and Their Use for Establishing the Complexity of Axiomatic Systems.Georg Kreisel & Azriel Lévy - 1968 - Zeitschrift für Mathematische Logic Und Grundlagen der Mathematik 14 (1):97--142.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Reflexive consistency proofs and gödel's second theorem.Paul Sagal - 1989 - Philosophia Mathematica (1):58-60.
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof theory in philosophy of mathematics.Andrew Arana - 2010 - Philosophy Compass 5 (4):336-347.
    A variety of projects in proof theory of relevance to the philosophy of mathematics are surveyed, including Gödel's incompleteness theorems, conservation results, independence results, ordinal analysis, predicativity, reverse mathematics, speed-up results, and provability logics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Type theory.Thierry Coquand - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mathematical proof theory in the light of ordinal analysis.Reinhard Kahle - 2002 - Synthese 133 (1/2):237 - 255.
    We give an overview of recent results in ordinal analysis. Therefore, we discuss the different frameworks used in mathematical proof-theory, namely "subsystem of analysis" including "reverse mathematics", "Kripke-Platek set theory", "explicit mathematics", "theories of inductive definitions", "constructive set theory", and "Martin-Löf's type theory".
    Download  
     
    Export citation  
     
    Bookmark  
  • Concepts and aims of functional interpretations: Towards a functional interpretation of constructive set theory.Wolfgang Burr - 2002 - Synthese 133 (1-2):257 - 274.
    The aim of this article is to give an introduction to functional interpretations of set theory given by the authorin Burr (2000a). The first part starts with some general remarks on Gödel's functional interpretation with a focus on aspects related to problems that arise in the context of set theory. The second part gives an insight in the techniques needed to perform a functional interpretation of systems of set theory. However, the first part of this article is not intended to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reflections on gödel's and Gandy's reflections on Turing's thesis.David Israel - 2002 - Minds and Machines 12 (2):181-201.
    We sketch the historical and conceptual context of Turing's analysis of algorithmic or mechanical computation. We then discuss two responses to that analysis, by Gödel and by Gandy, both of which raise, though in very different ways. The possibility of computation procedures that cannot be reduced to the basic procedures into which Turing decomposed computation. Along the way, we touch on some of Cleland's views.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A direct proof of schwichtenberg’s bar recursion closure theorem.Paulo Oliva & Silvia Steila - 2018 - Journal of Symbolic Logic 83 (1):70-83.
    Schwichtenberg showed that the System T definable functionals are closed under a rule-like version Spector’s bar recursion of lowest type levels 0 and 1. More precisely, if the functional Y which controls the stopping condition of Spector’s bar recursor is T-definable, then the corresponding bar recursion of type levels 0 and 1 is already T-definable. Schwichtenberg’s original proof, however, relies on a detour through Tait’s infinitary terms and the correspondence between ordinal recursion for α < ε₀ and primitive recursion over (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Alan Turing: person of the XXth century?José M. Sánchez Ron - 2013 - Arbor 189 (764):a085.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Concept of Finitism.Luca Incurvati - 2015 - Synthese 192 (8):2413-2436.
    At the most general level, the concept of finitism is typically characterized by saying that finitistic mathematics is that part of mathematics which does not appeal to completed infinite totalities and is endowed with some epistemological property that makes it secure or privileged. This paper argues that this characterization can in fact be sharpened in various ways, giving rise to different conceptions of finitism. The paper investigates these conceptions and shows that they sanction different portions of mathematics as finitistic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • In the Beginning was Game Semantics?Giorgi Japaridze - 2009 - In Ondrej Majer, Ahti-Veikko Pietarinen & Tero Tulenheimo (eds.), Games: Unifying Logic, Language, and Philosophy. Dordrecht, Netherland: Springer Verlag. pp. 249--350.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Functional interpretation of Aczel's constructive set theory.Wolfgang Burr - 2000 - Annals of Pure and Applied Logic 104 (1-3):31-73.
    In the present paper we give a functional interpretation of Aczel's constructive set theories CZF − and CZF in systems T ∈ and T ∈ + of constructive set functionals of finite types. This interpretation is obtained by a translation × , a refinement of the ∧ -translation introduced by Diller and Nahm 49–66) which again is an extension of Gödel's Dialectica translation. The interpretation theorem gives characterizations of the definable set functions of CZF − and CZF in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Extracting Herbrand disjunctions by functional interpretation.Philipp Gerhardy & Ulrich Kohlenbach - 2005 - Archive for Mathematical Logic 44 (5):633-644.
    Abstract.Carrying out a suggestion by Kreisel, we adapt Gödel’s functional interpretation to ordinary first-order predicate logic(PL) and thus devise an algorithm to extract Herbrand terms from PL-proofs. The extraction is carried out in an extension of PL to higher types. The algorithm consists of two main steps: first we extract a functional realizer, next we compute the β-normal-form of the realizer from which the Herbrand terms can be read off. Even though the extraction is carried out in the extended language, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Extensions of the Finitist Point of View.Matthias Schirn & Karl-Georg Niebergall - 2001 - History and Philosophy of Logic 22 (3):135-161.
    Hilbert developed his famous finitist point of view in several essays in the 1920s. In this paper, we discuss various extensions of it, with particular emphasis on those suggested by Hilbert and Bernays in Grundlagen der Mathematik (vol. I 1934, vol. II 1939). The paper is in three sections. The first deals with Hilbert's introduction of a restricted ? -rule in his 1931 paper ?Die Grundlegung der elementaren Zahlenlehre?. The main question we discuss here is whether the finitist (meta-)mathematician would (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What rests on what? The proof-theoretic analysis of mathematics.Solomon Feferman - 1993 - In J. Czermak (ed.), Philosophy of Mathematics. Hölder-Pichler-Tempsky. pp. 1--147.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Realizability and intuitionistic logic.J. Diller & A. S. Troelstra - 1984 - Synthese 60 (2):253 - 282.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Jan von Plato.* Can Mathematics be Proved Consistent?John W. Dawson - 2023 - Philosophia Mathematica 31 (1):104-111.
    The papers of Kurt Gödel were donated to the Institute for Advanced Study by his widow Adele shortly after his death in 1978. They were catalogued by the review.
    Download  
     
    Export citation  
     
    Bookmark  
  • Identity in Martin‐Löf type theory.Ansten Klev - 2021 - Philosophy Compass 17 (2):e12805.
    The logic of identity contains riches not seen through the coarse lens of predicate logic. This is one of several lessons to draw from the subtle treatment of identity in Martin‐Löf type theory, to which the reader will be introduced in this article. After a brief general introduction we shall mainly be concerned with the distinction between identity propositions and identity judgements. These differ from each other both in logical form and in logical strength. Along the way, connections to philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Human Rationality Challenges Universal Logic.Brian R. Gaines - 2010 - Logica Universalis 4 (2):163-205.
    Tarski’s conceptual analysis of the notion of logical consequence is one of the pinnacles of the process of defining the metamathematical foundations of mathematics in the tradition of his predecessors Euclid, Frege, Russell and Hilbert, and his contemporaries Carnap, Gödel, Gentzen and Turing. However, he also notes that in defining the concept of consequence “efforts were made to adhere to the common usage of the language of every day life.” This paper addresses the issue of what relationship Tarski’s analysis, and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hilbert and set theory.Burton Dreben & Akihiro Kanamori - 1997 - Synthese 110 (1):77-125.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • When physical systems realize functions.Matthias Scheutz - 1999 - Minds and Machines 9 (2):161-196.
    After briefly discussing the relevance of the notions computation and implementation for cognitive science, I summarize some of the problems that have been found in their most common interpretations. In particular, I argue that standard notions of computation together with a state-to-state correspondence view of implementation cannot overcome difficulties posed by Putnam's Realization Theorem and that, therefore, a different approach to implementation is required. The notion realization of a function, developed out of physical theories, is then introduced as a replacement (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Nonstandard Functional Interpretations and Categorical Models.Amar Hadzihasanovic & Benno van den Berg - 2017 - Notre Dame Journal of Formal Logic 58 (3):343-380.
    Recently, the second author, Briseid, and Safarik introduced nonstandard Dialectica, a functional interpretation capable of eliminating instances of familiar principles of nonstandard arithmetic—including overspill, underspill, and generalizations to higher types—from proofs. We show that the properties of this interpretation are mirrored by first-order logic in a constructive sheaf model of nonstandard arithmetic due to Moerdijk, later developed by Palmgren, and draw some new connections between nonstandard principles and principles that are rejected by strict constructivism. Furthermore, we introduce a variant of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The intuitionistic fragment of computability logic at the propositional level.Giorgi Japaridze - 2007 - Annals of Pure and Applied Logic 147 (3):187-227.
    This paper presents a soundness and completeness proof for propositional intuitionistic calculus with respect to the semantics of computability logic. The latter interprets formulas as interactive computational problems, formalized as games between a machine and its environment. Intuitionistic implication is understood as algorithmic reduction in the weakest possible — and hence most natural — sense, disjunction and conjunction as deterministic-choice combinations of problems , and “absurd” as a computational problem of universal strength.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)A General Theorem on Existence Theorems.Martin Stein - 1981 - Mathematical Logic Quarterly 27 (25‐30):435-452.
    Download  
     
    Export citation  
     
    Bookmark  
  • Consistency, Models, and Soundness.Matthias Schirn - 2010 - Axiomathes 20 (2):153-207.
    This essay consists of two parts. In the first part, I focus my attention on the remarks that Frege makes on consistency when he sets about criticizing the method of creating new numbers through definition or abstraction. This gives me the opportunity to comment also a little on H. Hankel, J. Thomae—Frege’s main targets when he comes to criticize “formal theories of arithmetic” in Die Grundlagen der Arithmetik (1884) and the second volume of Grundgesetze der Arithmetik (1903)—G. Cantor, L. E. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert's philosophy of mathematics.Marcus Giaquinto - 1983 - British Journal for the Philosophy of Science 34 (2):119-132.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Soft Axiomatisation: John von Neumann on Method and von Neumann's Method in the Physical Sciences.Miklós Rédei & Michael Stöltzner - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 235--249.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The consistency problem for set theory: An essay on the Cantorian foundations of mathematics (II).John Mayberry - 1977 - British Journal for the Philosophy of Science 28 (2):137-170.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf.Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This book brings together philosophers, mathematicians and logicians to penetrate important problems in the philosophy and foundations of mathematics. In philosophy, one has been concerned with the opposition between constructivism and classical mathematics and the different ontological and epistemological views that are reflected in this opposition. The dominant foundational framework for current mathematics is classical logic and set theory with the axiom of choice. This framework is, however, laden with philosophical difficulties. One important alternative foundational programme that is actively pursued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Limits of Computation.Andrew Powell - 2022 - Axiomathes 32 (6):991-1011.
    This article provides a survey of key papers that characterise computable functions, but also provides some novel insights as follows. It is argued that the power of algorithms is at least as strong as functions that can be proved to be totally computable in type-theoretic translations of subsystems of second-order Zermelo Fraenkel set theory. Moreover, it is claimed that typed systems of the lambda calculus give rise naturally to a functional interpretation of rich systems of types and to a hierarchy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fatal Heyting Algebras and Forcing Persistent Sentences.Leo Esakia & Benedikt Löwe - 2012 - Studia Logica 100 (1-2):163-173.
    Hamkins and Löwe proved that the modal logic of forcing is S4.2 . In this paper, we consider its modal companion, the intermediate logic KC and relate it to the fatal Heyting algebra H ZFC of forcing persistent sentences. This Heyting algebra is equationally generic for the class of fatal Heyting algebras. Motivated by these results, we further analyse the class of fatal Heyting algebras.
    Download  
     
    Export citation  
     
    Bookmark   3 citations