Switch to: Citations

Add references

You must login to add references.
  1. Guessing models and generalized Laver diamond.Matteo Viale - 2012 - Annals of Pure and Applied Logic 163 (11):1660-1678.
    We analyze the notion of guessing model, a way to assign combinatorial properties to arbitrary regular cardinals. Guessing models can be used, in combination with inaccessibility, to characterize various large cardinal axioms, ranging from supercompactness to rank-to-rank embeddings. The majority of these large cardinal properties can be defined in terms of suitable elementary embeddings j:Vγ→Vλ. One key observation is that such embeddings are uniquely determined by the image structures j[Vγ]≺Vλ. These structures will be the prototypes guessing models. We shall show, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • PFA and Ideals on $\omega_{2}$ Whose Associated Forcings Are Proper.Sean Cox - 2012 - Notre Dame Journal of Formal Logic 53 (3):397-412.
    Given an ideal $I$ , let $\mathbb{P}_{I}$ denote the forcing with $I$ -positive sets. We consider models of forcing axioms $MA(\Gamma)$ which also have a normal ideal $I$ with completeness $\omega_{2}$ such that $\mathbb{P}_{I}\in \Gamma$ . Using a bit more than a superhuge cardinal, we produce a model of PFA (proper forcing axiom) which has many ideals on $\omega_{2}$ whose associated forcings are proper; a similar phenomenon is also observed in the standard model of $MA^{+\omega_{1}}(\sigma\mbox{-closed})$ obtained from a supercompact cardinal. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Fragments of Martin's Maximum in generic extensions.Y. Yoshinobu & B. Konig - 2004 - Mathematical Logic Quarterly 50 (3):297.
    We show that large fragments of MM, e. g. the tree property and stationary reflection, are preserved by strongly -game-closed forcings. PFA can be destroyed by a strongly -game-closed forcing but not by an ω2-closed.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   329 citations  
  • (1 other version)We prove covering theorems for K, where K is the core model below the sharp for a strong cardinal, and give an application to stationary set reflection.David Asperó, John Krueger & Yasuo Yoshinobu - 2010 - Annals of Pure and Applied Logic 161 (1):94-108.
    We present several forcing posets for adding a non-reflecting stationary subset of Pω1, where λ≥ω2. We prove that PFA is consistent with dense non-reflection in Pω1, which means that every stationary subset of Pω1 contains a stationary subset which does not reflect to any set of size 1. If λ is singular with countable cofinality, then dense non-reflection in Pω1 follows from the existence of squares.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Forcing with Sequences of Models of Two Types.Itay Neeman - 2014 - Notre Dame Journal of Formal Logic 55 (2):265-298.
    We present an approach to forcing with finite sequences of models that uses models of two types. This approach builds on earlier work of Friedman and Mitchell on forcing to add clubs in cardinals larger than $\aleph_{1}$, with finite conditions. We use the two-type approach to give a new proof of the consistency of the proper forcing axiom. The new proof uses a finite support forcing, as opposed to the countable support iteration in the standard proof. The distinction is important (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Operations, climbability and the proper forcing axiom.Yasuo Yoshinobu - 2013 - Annals of Pure and Applied Logic 164 (7-8):749-762.
    In this paper we show that the Proper Forcing Axiom is preserved under forcing over any poset PP with the following property: In the generalized Banach–Mazur game over PP of length , Player II has a winning strategy which depends only on the current position and the ordinal indicating the number of moves made so far. By the current position we mean: The move just made by Player I for a successor stage, or the infimum of all the moves made (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Some applications of mixed support iterations.John Krueger - 2009 - Annals of Pure and Applied Logic 158 (1-2):40-57.
    We give some applications of mixed support forcing iterations to the topics of disjoint stationary sequences and internally approachable sets. In the first half of the paper we study the combinatorial content of the idea of a disjoint stationary sequence, including its relation to adding clubs by forcing, the approachability ideal, canonical structure, the proper forcing axiom, and properties related to internal approachability. In the second half of the paper we present some consistency results related to these ideas. We construct (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Internal approachability and reflection.John Krueger - 2008 - Journal of Mathematical Logic 8 (1):23-39.
    We prove that the Weak Reflection Principle does not imply that every stationary set reflects to an internally approachable set. We show that several variants of internal approachability, namely, internally unbounded, internally stationary, and internally club, are not provably equivalent.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Dense non-reflection for stationary collections of countable sets.David Asperó, John Krueger & Yasuo Yoshinobu - 2010 - Annals of Pure and Applied Logic 161 (1):94-108.
    Download  
     
    Export citation  
     
    Bookmark   2 citations