Switch to: Citations

Add references

You must login to add references.
  1. Precipitous Towers of Normal Filters.Douglas R. Burke - 1997 - Journal of Symbolic Logic 62 (3):741-754.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Large cardinals and definable counterexamples to the continuum hypothesis.Matthew Foreman & Menachem Magidor - 1995 - Annals of Pure and Applied Logic 76 (1):47-97.
    In this paper we consider whether L(R) has “enough information” to contain a counterexample to the continuum hypothesis. We believe this question provides deep insight into the difficulties surrounding the continuum hypothesis. We show sufficient conditions for L(R) not to contain such a counterexample. Along the way we establish many results about nonstationary towers, non-reflecting stationary sets, generalizations of proper and semiproper forcing and Chang's conjecture.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • The Higher Infinite.Akihiro Kanamori - 2000 - Studia Logica 65 (3):443-446.
    Download  
     
    Export citation  
     
    Bookmark   212 citations  
  • Ideal projections and forcing projections.Sean Cox & Martin Zeman - 2014 - Journal of Symbolic Logic 79 (4):1247-1285.
    It is well known that saturation of ideals is closely related to the “antichain-catching” phenomenon from Foreman–Magidor–Shelah [10]. We consider several antichain-catching properties that are weaker than saturation, and prove:If${\cal I}$is a normal ideal on$\omega _2 $which satisfiesstationary antichain catching, then there is an inner model with a Woodin cardinal;For any$n \in \omega $, it is consistent relative to large cardinals that there is a normal ideal${\cal I}$on$\omega _n $which satisfiesprojective antichain catching, yet${\cal I}$is not saturated. This provides a negative (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Guessing models and generalized Laver diamond.Matteo Viale - 2012 - Annals of Pure and Applied Logic 163 (11):1660-1678.
    We analyze the notion of guessing model, a way to assign combinatorial properties to arbitrary regular cardinals. Guessing models can be used, in combination with inaccessibility, to characterize various large cardinal axioms, ranging from supercompactness to rank-to-rank embeddings. The majority of these large cardinal properties can be defined in terms of suitable elementary embeddings j:Vγ→Vλ. One key observation is that such embeddings are uniquely determined by the image structures j[Vγ]≺Vλ. These structures will be the prototypes guessing models. We shall show, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Generic large cardinals and systems of filters.Giorgio Audrito & Silvia Steila - 2017 - Journal of Symbolic Logic 82 (3):860-892.
    We introduce the notion of ${\cal C}$-system of filters, generalizing the standard definitions of both extenders and towers of normal ideals. This provides a framework to develop the theory of extenders and towers in a more general and concise way. In this framework we investigate the topic of definability of generic large cardinals properties.
    Download  
     
    Export citation  
     
    Bookmark   1 citation