Switch to: References

Citations of:

The Higher Infinite

Studia Logica 65 (3):443-446 (2000)

Add citations

You must login to add citations.
  1. Global Reflection Principles.P. D. Welch - 2017 - In I. Niiniluoto, H. Leitgeb, P. Seppälä & E. Sober (eds.), Logic, Methodology and Philosophy of Science - Proceedings of the 15th International Congress, 2015. College Publications.
    Reflection Principles are commonly thought to produce only strong axioms of infinity consistent with V = L. It would be desirable to have some notion of strong reflection to remedy this, and we have proposed Global Reflection Principles based on a somewhat Cantorian view of the universe. Such principles justify the kind of cardinals needed for, inter alia , Woodin’s Ω-Logic.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the Consistency of the Definable Tree Property on $\aleph_1$.Amir Leshem - 2000 - Journal of Symbolic Logic 65 (3):1204-1214.
    In this paper we prove the equiconsistency of "Every $\omega_1$-tree which is first order definable over has a cofinal branch" with the existence of a $\Pi^1_1$ reflecting cardinal. We also prove that the addition of MA to the definable tree property increases the consistency strength to that of a weakly compact cardinal. Finally we comment on the generalization to higher cardinals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Two Applications Of Inner Model Theory To The Study Of \sigma^1_2 Sets.Greg Hjorth - 1996 - Bulletin of Symbolic Logic 2 (1):94-107.
    §0. Preface. There has been an expectation that the endgame of the more tenacious problems raised by the Los Angeles ‘cabal’ school of descriptive set theory in the 1970's should ultimately be played out with the use of inner model theory. Questions phrased in the language of descriptive set theory, where both the conclusions and the assumptions are couched in terms that only mention simply definable sets of reals, and which have proved resistant to purely descriptive set theoretic arguments, may (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Canonical functions, non-regular ultrafilters and Ulam’s problem on ω1.Oliver Deiser & Dieter Donder - 2003 - Journal of Symbolic Logic 68 (3):713-739.
    Our main results are:Theorem 1. Con implies Con. [In fact equiconsistency holds.]Theorem 3. Con implies Con.Theorem 5. Con ”) implies Con.We start with a discussion of the canonical functions and look at some combinatorial principles. Assuming the domination property of Theorem 1, we use the Ketonen diagram to show that ω2V is a limit of measurable cardinals in Jensen’s core model KMO for measures of order zero. Using related arguments we show that ω2V is a stationary limit of measurable cardinals (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Jonsson-like partition relations and j: V → V.Arthur W. Apter & Grigor Sargsyan - 2004 - Journal of Symbolic Logic 69 (4):1267-1281.
    Working in the theory “ZF + There is a nontrivial elementary embedding j: V → V ”, we show that a final segment of cardinals satisfies certain square bracket finite and infinite exponent partition relations. As a corollary to this, we show that this final segment is composed of Jonsson cardinals. We then show how to force and bring this situation down to small alephs. A prototypical result is the construction of a model for ZF in which every cardinal μ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Laver Indestructibility and the Class of Compact Cardinals.Arthur W. Apter - 1998 - Journal of Symbolic Logic 63 (1):149-157.
    Using an idea developed in joint work with Shelah, we show how to redefine Laver's notion of forcing making a supercompact cardinal $\kappa$ indestructible under $\kappa$-directed closed forcing to give a new proof of the Kimchi-Magidor Theorem in which every compact cardinal in the universe satisfies certain indestructibility properties. Specifically, we show that if K is the class of supercompact cardinals in the ground model, then it is possible to force and construct a generic extension in which the only strongly (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Supercompactness and Measurable Limits of Strong Cardinals.Arthur W. Apter - 2001 - Journal of Symbolic Logic 66 (2):629-639.
    In this paper, two theorems concerning measurable limits of strong cardinals and supercompactness are proven. This generalizes earlier work, both individual and joint with Shelah.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • How applied mathematics became pure.Penelope Maddy - 2008 - Review of Symbolic Logic 1 (1):16-41.
    My goal here is to explore the relationship between pure and applied mathematics and then, eventually, to draw a few morals for both. In particular, I hope to show that this relationship has not been static, that the historical rise of pure mathematics has coincided with a gradual shift in our understanding of how mathematics works in application to the world. In some circles today, it is held that historical developments of this sort simply represent changes in fashion, or in (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The mathematical development of set theory from Cantor to Cohen.Akihiro Kanamori - 1996 - Bulletin of Symbolic Logic 2 (1):1-71.
    Set theory is an autonomous and sophisticated field of mathematics, enormously successful not only at its continuing development of its historical heritage but also at analyzing mathematical propositions cast in set-theoretic terms and gauging their consistency strength. But set theory is also distinguished by having begun intertwined with pronounced metaphysical attitudes, and these have even been regarded as crucial by some of its great developers. This has encouraged the exaggeration of crises in foundations and of metaphysical doctrines in general. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Another use of set theory.Patrick Dehornoy - 1996 - Bulletin of Symbolic Logic 2 (4):379-391.
    Here, we analyse some recent applications of set theory to topology and argue that set theory is not only the closed domain where mathematics is usually founded, but also a flexible framework where imperfect intuitions can be precisely formalized and technically elaborated before they possibly migrate toward other branches. This apparently new role is mostly reminiscent of the one played by other external fields like theoretical physics, and we think that it could contribute to revitalize the interest in set theory (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Make It So: Imperatival Foundations for Mathematics.Neil Barton, Ethan Russo & Chris Scambler - manuscript
    This article articulates and assesses an imperatival approach to the foundations of mathematics. The core idea for the program is that mathematical domains of interest can fruitfully be viewed as the outputs of construction procedures. We apply this idea to provide a novel formalisation of arithmetic and set theory in terms of such procedures, and discuss the significance of this perspective for the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödelian platonism and mathematical intuition.Wesley Wrigley - 2021 - European Journal of Philosophy 30 (2):578-600.
    European Journal of Philosophy, Volume 30, Issue 2, Page 578-600, June 2022.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematics and Set Theory:数学と集合論.Sakaé Fuchino - 2018 - Journal of the Japan Association for Philosophy of Science 46 (1):33-47.
    Download  
     
    Export citation  
     
    Bookmark  
  • Finitist set theory in ontological modeling.Avril Styrman & Aapo Halko - 2018 - Applied ontology 13 (2):107-133.
    This article introduces finitist set theory (FST) and shows how it can be applied in modeling finite nested structures. Mereology is a straightforward foundation for transitive chains of part-whole relations between individuals but is incapable of modeling antitransitive chains. Traditional set theories are capable of modeling transitive and antitransitive chains of relations, but due to their function as foundations of mathematics they come with features that make them unnecessarily difficult in modeling finite structures. FST has been designed to function as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dense ideals and cardinal arithmetic.Monroe Eskew - 2016 - Journal of Symbolic Logic 81 (3):789-813.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ipotesi del Continuo.Claudio Ternullo - 2017 - Aphex 16.
    L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle ragioni (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hyperintensional Foundations of Mathematical Platonism.David Elohim - manuscript
    This paper aims to provide hyperintensional foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Gödel’s Cantorianism.Claudio Ternullo - 2015 - In E.-M. Engelen (ed.), Kurt Gödel: Philosopher-Scientist. Presses Universitaires de Provence. pp. 417-446.
    Gödel’s philosophical conceptions bear striking similarities to Cantor’s. Although there is no conclusive evidence that Gödel deliberately used or adhered to Cantor’s views, one can successfully reconstruct and see his “Cantorianism” at work in many parts of his thought. In this paper, I aim to describe the most prominent conceptual intersections between Cantor’s and Gödel’s thought, particularly on such matters as the nature and existence of mathematical entities (sets), concepts, Platonism, the Absolute Infinite, the progress and inexhaustibility of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A covering lemma for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K(\mathbb {R})}$$\end{document}. [REVIEW]Daniel W. Cunningham - 2007 - Archive for Mathematical Logic 46 (3-4):197-221.
    The Dodd–Jensen Covering Lemma states that “if there is no inner model with a measurable cardinal, then for any uncountable set of ordinals X, there is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y\in K}$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X\subseteq Y}$$\end{document} and |X| = |Y|”. Assuming ZF+AD alone, we establish the following analog: If there is no inner model with an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Infinity and a Critical View of Logic.Charles Parsons - 2015 - Inquiry: An Interdisciplinary Journal of Philosophy 58 (1):1-19.
    The paper explores the view that in mathematics, in particular where the infinite is involved, the application of classical logic to statements involving the infinite cannot be taken for granted. L. E. J. Brouwer’s well-known rejection of classical logic is sketched, and the views of David Hilbert and especially Hermann Weyl, both of whom used classical logic in their mathematical practice, are explored. We inquire whether arguments for a critical view can be found that are independent of constructivist premises and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A taste of set theory for philosophers.Jouko Väänänen - 2011 - Journal of the Indian Council of Philosophical Research (2):143-163.
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel's program revisited part I: The turn to phenomenology.Kai Hauser - 2006 - Bulletin of Symbolic Logic 12 (4):529-590.
    Convinced that the classically undecidable problems of mathematics possess determinate truth values, Gödel issued a programmatic call to search for new axioms for their solution. The platonism underlying his belief in the determinateness of those questions in combination with his conception of intuition as a kind of perception have struck many of his readers as highly problematic. Following Gödel's own suggestion, this article explores ideas from phenomenology to specify a meaning for his mathematical realism that allows for a defensible epistemology.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Is Cantor's continuum problem inherently vague?Kai Hauser - 2002 - Philosophia Mathematica 10 (3):257-285.
    I examine various claims to the effect that Cantor's Continuum Hypothesis and other problems of higher set theory are ill-posed questions. The analysis takes into account the viability of the underlying philosophical views and recent mathematical developments.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Does Imply, Uniformly?Alessandro Andretta & Lorenzo Notaro - forthcoming - Journal of Symbolic Logic:1-25.
    The axiom of dependent choice ( $\mathsf {DC}$ ) and the axiom of countable choice ( ${\mathsf {AC}}_\omega $ ) are two weak forms of the axiom of choice that can be stated for a specific set: $\mathsf {DC} ( X )$ asserts that any total binary relation on X has an infinite chain, while ${\mathsf {AC}}_\omega ( X )$ asserts that any countable collection of nonempty subsets of X has a choice function. It is well-known that $\mathsf {DC} \Rightarrow (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Divine Consistency Proof for Mathematics. Friedman - 2024 - In Mirosław Szatkowski (ed.), Ontology of Divinity. Boston: De Gruyter. pp. 645-696.
    We present familiar principles involving objects and classes (of objects), pairing (on objects), choice (selecting elements from classes), positive classes (elements of an ultrafilter), and definable classes (definable using the preceding notions). We also postulate the existence of a divine object in the formalized sense of lying in every definable positive class. ZFC (even extended with certain hypotheses just shy of the existence of a measurable cardinal) is interpretable in the resulting system. This establishes the consistency of mathematics relative to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Generalized independence.Fernando Hernández-Hernández & Carlos López-Callejas - 2024 - Annals of Pure and Applied Logic 175 (7):103440.
    Download  
     
    Export citation  
     
    Bookmark  
  • On middle box products and paracompact cardinals.David Buhagiar & Mirna Džamonja - 2024 - Annals of Pure and Applied Logic 175 (1):103332.
    Download  
     
    Export citation  
     
    Bookmark  
  • Ontology of Divinity.Mirosław Szatkowski (ed.) - 2024 - Boston: De Gruyter.
    This volume announces a new era in the philosophy of God. Many of its contributions work to create stronger links between the philosophy of God, on the one hand, and mathematics or metamathematics, on the other hand. It is about not only the possibilities of applying mathematics or metamathematics to questions about God, but also the reverse question: Does the philosophy of God have anything to offer mathematics or metamathematics? The remaining contributions tackle stereotypes in the philosophy of religion. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The large cardinal strength of weak Vopenka’s principle.Trevor M. Wilson - 2022 - Journal of Mathematical Logic 22 (1):2150024.
    We show that Weak Vopěnka’s Principle, which is the statement that the opposite category of ordinals cannot be fully embedded into the category of graphs, is equivalent to the large cardinal principle Ord is Woodin, which says that for every class [Formula: see text] there is a [Formula: see text]-strong cardinal. Weak Vopěnka’s Principle was already known to imply the existence of a proper class of measurable cardinals. We improve this lower bound to the optimal one by defining structures whose (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Forcing a □(κ)-like principle to hold at a weakly compact cardinal.Brent Cody, Victoria Gitman & Chris Lambie-Hanson - 2021 - Annals of Pure and Applied Logic 172 (7):102960.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Definable MAD families and forcing axioms.Vera Fischer, David Schrittesser & Thilo Weinert - 2021 - Annals of Pure and Applied Logic 172 (5):102909.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Axiom of Infinity and Transformations j: V → V.Paul Corazza - 2010 - Bulletin of Symbolic Logic 16 (1):37-84.
    We suggest a new approach for addressing the problem of establishing an axiomatic foundation for large cardinals. An axiom asserting the existence of a large cardinal can naturally be viewed as a strong Axiom of Infinity. However, it has not been clear on the basis of our knowledge of ω itself, or of generally agreed upon intuitions about the true nature of the mathematical universe, what the right strengthening of the Axiom of Infinity is—which large cardinals ought to be derivable? (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Strong Reflection Principle.Sam Roberts - 2017 - Review of Symbolic Logic 10 (4):651-662.
    This article introduces a new reflection principle. It is based on the idea that whatever is true in all entities of some kind is also true in a set-sized collection of them. Unlike standard reflection principles, it does not re-interpret parameters or predicates. This allows it to be both consistent in all higher-order languages and remarkably strong. For example, I show that in the language of second-order set theory with predicates for a satisfaction relation, it is consistent relative to the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Ramsey-like cardinals II.Victoria Gitman & P. D. Welch - 2011 - Journal of Symbolic Logic 76 (2):541-560.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Formalization, Syntax and the Standard Model of Arithmetic.Luca Bellotti - 2007 - Synthese 154 (2):199-229.
    I make an attempt at the description of the delicate role of the standard model of arithmetic for the syntax of formal systems. I try to assess whether the possible instability in the notion of finiteness deriving from the nonstandard interpretability of arithmetic affects the very notions of syntactic metatheory and of formal system. I maintain that the crucial point of the whole question lies in the evaluation of the phenomenon of formalization. The ideas of Skolem, Zermelo, Beth and Carnap (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Putnam and Constructibility.Luca Bellotti - 2005 - Erkenntnis 62 (3):395-409.
    I discuss and try to evaluate the argument about constructible sets made by Putnam in ‘ ”Models and Reality”, and some of the counterarguments directed against it in the literature. I shall conclude that Putnam’s argument, while correct in substance, nevertheless has no direct bearing on the philosophical question of unintended models of set theory.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Multiverse Conceptions in Set Theory.Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo - 2015 - Synthese 192 (8):2463-2488.
    We review different conceptions of the set-theoretic multiverse and evaluate their features and strengths. In Sect. 1, we set the stage by briefly discussing the opposition between the ‘universe view’ and the ‘multiverse view’. Furthermore, we propose to classify multiverse conceptions in terms of their adherence to some form of mathematical realism. In Sect. 2, we use this classification to review four major conceptions. Finally, in Sect. 3, we focus on the distinction between actualism and potentialism with regard to the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Making all cardinals almost Ramsey.Arthur W. Apter & Peter Koepke - 2008 - Archive for Mathematical Logic 47 (7-8):769-783.
    We examine combinatorial aspects and consistency strength properties of almost Ramsey cardinals. Without the Axiom of Choice, successor cardinals may be almost Ramsey. From fairly mild supercompactness assumptions, we construct a model of ZF + ${\neg {\rm AC}_\omega}$ in which every infinite cardinal is almost Ramsey. Core model arguments show that strong assumptions are necessary. Without successors of singular cardinals, we can weaken this to an equiconsistency of the following theories: “ZFC + There is a proper class of regular almost (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Realizing Mahlo set theory in type theory.Michael Rathjen - 2003 - Archive for Mathematical Logic 42 (1):89-101.
    After introducing the large set notion of Mahloness, this paper shows that constructive set theory with an axiom asserting the existence of a Mahlo set has a realizability interpretation in an extension of Martin-Löf type theory developed by A. Setzer.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Modeling occurrences of objects in relations.Joop Leo - 2010 - Review of Symbolic Logic 3 (1):145-174.
    We study the logical structure of relations, and in particular the notion of occurrences of objects in a state. We start with formulating a number of principles for occurrences and defining corresponding mathematical models. These models are analyzed to get more insight in the formal properties of occurrences. In particular, we prove uniqueness results that tell us more about the possible logical structures relations might have.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • An ordinal analysis of parameter free Π12-comprehension.Michael Rathjen - 2005 - Archive for Mathematical Logic 44 (3):263-362.
    Abstract.This paper is the second in a series of three culminating in an ordinal analysis of Π12-comprehension. Its objective is to present an ordinal analysis for the subsystem of second order arithmetic with Δ12-comprehension, bar induction and Π12-comprehension for formulae without set parameters. Couched in terms of Kripke-Platek set theory, KP, the latter system corresponds to KPi augmented by the assertion that there exists a stable ordinal, where KPi is KP with an additional axiom stating that every set is contained (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Ramsey-like cardinals.Victoria Gitman - 2011 - Journal of Symbolic Logic 76 (2):519 - 540.
    One of the numerous characterizations of a Ramsey cardinal κ involves the existence of certain types of elementary embeddings for transitive sets of size κ satisfying a large fragment of ZFC. We introduce new large cardinal axioms generalizing the Ramsey elementary embeddings characterization and show that they form a natural hierarchy between weakly compact cardinals and measurable cardinals. These new axioms serve to further our knowledge about the elementary embedding properties of smaller large cardinals, in particular those still consistent with (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Infinite Time Decidable Equivalence Relation Theory.Samuel Coskey & Joel David Hamkins - 2011 - Notre Dame Journal of Formal Logic 52 (2):203-228.
    We introduce an analogue of the theory of Borel equivalence relations in which we study equivalence relations that are decidable by an infinite time Turing machine. The Borel reductions are replaced by the more general class of infinite time computable functions. Many basic aspects of the classical theory remain intact, with the added bonus that it becomes sensible to study some special equivalence relations whose complexity is beyond Borel or even analytic. We also introduce an infinite time generalization of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Are There Absolutely Unsolvable Problems? Godel's Dichotomy.S. Feferman - 2006 - Philosophia Mathematica 14 (2):134-152.
    This is a critical analysis of the first part of Go¨del’s 1951 Gibbs lecture on certain philosophical consequences of the incompleteness theorems. Go¨del’s discussion is framed in terms of a distinction between objective mathematics and subjective mathematics, according to which the former consists of the truths of mathematics in an absolute sense, and the latter consists of all humanly demonstrable truths. The question is whether these coincide; if they do, no formal axiomatic system (or Turing machine) can comprehend the mathematizing (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Preserving Preservation.Jakob Kellner & Saharon Shelah - 2005 - Journal of Symbolic Logic 70 (3):914 - 945.
    We prove that the property "P doesn't make the old reals Lebesgue null" is preserved under countable support iterations of proper forcings, under the additional assumption that the forcings are nep (a generalization of Suslin proper) in an absolute way. We also give some results for general Suslin ccc ideals.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Splitting number at uncountable cardinals.Jindrich Zapletal - 1997 - Journal of Symbolic Logic 62 (1):35-42.
    We study a generalization of the splitting number s to uncountable cardinals. We prove that $\mathfrak{s}(\kappa) > \kappa^+$ for a regular uncountable cardinal κ implies the existence of inner models with measurables of high Mitchell order. We prove that the assumption $\mathfrak{s}(\aleph_\omega) > \aleph_{\omega + 1}$ has a considerable large cardinal strength as well.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Canonical universes and intuitions about probabilities.Randall Dougherty & Jan Mycielski - 2006 - Dialectica 60 (4):357–368.
    This paper consists of three parts supplementing the papers of K. Hauser 2002 and D. Mumford 2000: There exist regular open sets of points in with paradoxical properties, which are constructed without using the axiom of choice or the continuum hypothesis. There exist canonical universes of sets in which one can define essentially all objects of mathematical analysis and in which all our intuitions about probabilities are true. Models satisfying the full axiom of choice cannot satisfy all those intuitions and (...)
    Download  
     
    Export citation  
     
    Bookmark