Switch to: Citations

Add references

You must login to add references.
  1. Subrecursion: functions and hierarchies.H. E. Rose - 1984 - New York: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • A mathematical incompleteness in Peano arithmetic.Jeff Paris & Leo Harrington - 1977 - In Jon Barwise (ed.), Handbook of mathematical logic. New York: North-Holland. pp. 90--1133.
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Models of Peano Arithmetic.Richard Kaye - 1991 - Clarendon Press.
    An introduction to the developments of nonstandard models. Beginning with Godel's incompleteness theorem, it covers the prime models, cofinal extensions, and extensions, Gaifman's construction of a definable type, Tennenbaum's theorem and Friedman's theorem on indicators, ending with a chapter on recursive saturation and resplendency.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Diophantine Induction.Richard Kaye - 1990 - Annals of Pure and Applied Logic 46 (1):1-40.
    We show that Matijasevič's Theorem on the diophantine representation of r.e. predicates is provable in the subsystem I ∃ - 1 of Peano Arithmetic formed by restricting the induction scheme to diophantine formulas with no parameters. More specifically, I ∃ - 1 ⊢ IE - 1 + E ⊢ Matijasevič's Theorem where IE - 1 is the scheme of parameter-free bounded existential induction and E is an ∀∃ axiom expressing the existence of a function of exponential growth. We conclude by (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Bounded existential induction.George Wilmers - 1985 - Journal of Symbolic Logic 50 (1):72-90.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Local behaviour of the chebyshev theorem in models of iδ.Paola D'Aquino - 1992 - Journal of Symbolic Logic 57 (1):12 - 27.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On the complexity of models of arithmetic.Kenneth McAloon - 1982 - Journal of Symbolic Logic 47 (2):403-415.
    Let P 0 be the subsystem of Peano arithmetic obtained by restricting induction to bounded quantifier formulas. Let M be a countable, nonstandard model of P 0 whose domain we suppose to be the standard integers. Let T be a recursively enumerable extension of Peano arithmetic all of whose existential consequences are satisfied in the standard model. Then there is an initial segment M ' of M which is a model of T such that the complete diagram of M ' (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations