Switch to: References

Citations of:

Subrecursion: functions and hierarchies

New York: Oxford University Press (1984)

Add citations

You must login to add citations.
  1. Cut-eliminability in Second Order Logic Calculus.Toshiyasu Arai - 2018 - Annals of the Japan Association for Philosophy of Science 27:45-60.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Effectivizing Inseparability.John Case - 1991 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 37 (7):97-111.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Finitistic Arithmetic and Classical Logic.Mihai Ganea - 2014 - Philosophia Mathematica 22 (2):167-197.
    It can be argued that only the equational theories of some sub-elementary function algebras are finitistic or intuitive according to a certain interpretation of Hilbert's conception of intuition. The purpose of this paper is to investigate the relation of those restricted forms of equational reasoning to classical quantifier logic in arithmetic. The conclusion reached is that Edward Nelson's ‘predicative arithmetic’ program, which makes essential use of classical quantifier logic, cannot be justified finitistically and thus requires a different philosophical foundation, possibly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Elementary descent recursion and proof theory.Harvey Friedman & Michael Sheard - 1995 - Annals of Pure and Applied Logic 71 (1):1-45.
    We define a class of functions, the descent recursive functions, relative to an arbitrary elementary recursive system of ordinal notations. By means of these functions, we provide a general technique for measuring the proof-theoretic strength of a variety of systems of first-order arithmetic. We characterize the provable well-orderings and provably recursive functions of these systems, and derive various conservation and equiconsistency results.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Extracting Algorithms from Intuitionistic Proofs.Fernando Ferreira & António Marques - 1998 - Mathematical Logic Quarterly 44 (2):143-160.
    This paper presents a new method - which does not rely on the cut-elimination theorem - for characterizing the provably total functions of certain intuitionistic subsystems of arithmetic. The new method hinges on a realizability argument within an infinitary language. We illustrate the method for the intuitionistic counterpart of Buss's theory Smath image, and we briefly sketch it for the other levels of bounded arithmetic and for the theory IΣ1.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Uniform Approach to Fundamental Sequences and Hierarchies.Wilfried Buchholz, Adam Cichon & Andreas Weiermann - 1994 - Mathematical Logic Quarterly 40 (2):273-286.
    In this article we give a unifying approach to the theory of fundamental sequences and their related Hardy hierarchies of number-theoretic functions and we show the equivalence of the new approach with the classical one.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)Effectivizing Inseparability.John Case - 1991 - Mathematical Logic Quarterly 37 (7):97-111.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On a theorem of Günter Asser.Cristian S. Calude & Lila Sântean - 1990 - Mathematical Logic Quarterly 36 (2):143-147.
    Recently, G. ASSER has obtained two interesting characterizations of the class of unary primitive recursive string-functions over a fixed alphabet as Robinson algebras. Both characterizations use a somewhat artificial string-function, namely the string-function lexicographically associated with the number-theoretical excess-over-a-square function. Our aim is to offer two new and natural Robinson algebras which are equivalent to ASSER’S algebras.
    Download  
     
    Export citation  
     
    Bookmark  
  • Characterization of the Relations in Grzegorczyk's Hierarchy Revisited.Jean-Sylvestre Gakwaya - 1997 - Mathematical Logic Quarterly 43 (1):73-77.
    In his 1953's paper, Grzegorczyk proved that a certain kind of relation classes of Grzegorczyk's hierarchy could be characterized inductively. We give a simpler version of this characterization.
    Download  
     
    Export citation  
     
    Bookmark  
  • A proof of strongly uniform termination for Gödel's \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $T$\end{document} by methods from local predicativity. [REVIEW]Andreas Weiermann - 1997 - Archive for Mathematical Logic 36 (6):445-460.
    We estimate the derivation lengths of functionals in Gödel's system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $T$\end{document} of primitive recursive functionals of finite type by a purely recursion-theoretic analysis of Schütte's 1977 exposition of Howard's weak normalization proof for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $T$\end{document}. By using collapsing techniques from Pohlers' local predicativity approach to proof theory and based on the Buchholz-Cichon and Weiermann 1994 approach to subrecursive hierarchies we define a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Ackermann functions are not optimal, but by how much?H. Simmons - 2010 - Journal of Symbolic Logic 75 (1):289-313.
    By taking a closer look at the construction of an Ackermann function we see that between any primitive recursive degree and its Ackermann modification there is a dense chain of primitive recursive degrees.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Two (or three) notions of finitism.Mihai Ganea - 2010 - Review of Symbolic Logic 3 (1):119-144.
    Finitism is given an interpretation based on two ideas about strings (sequences of symbols): a replacement principle extracted from Hilberts class 2 can be justified by means of an additional finitistic choice principle, thus obtaining a second equational theory . It is unknown whether is strictly stronger than since 2 may coincide with the class of lower elementary functions.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell.David DeVidi, Michael Hallett & Peter Clark (eds.) - 2011 - Dordrecht, Netherland: Springer.
    The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic ; analytical philosophy, philosophy of science, philosophy of mathematics and decision theory and foundations of economics. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bounded arithmetic for NC, ALogTIME, L and NL.P. Clote & G. Takeuti - 1992 - Annals of Pure and Applied Logic 56 (1-3):73-117.
    We define theories of bounded arithmetic, whose definable functions and relations are exactly those in certain complexity classes. Based on a recursion-theoretic characterization of NC in Clote , the first-order theory TNC, whose principal axiom scheme is a form of short induction on notation for nondeterministic polynomial-time computable relations, has the property that those functions having nondeterministic polynomial-time graph Θ such that TNC x y Θ are exactly the functions in NC, computable on a parallel random-access machine in polylogarithmic parallel (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • A decidable theory of type assignment.William R. Stirton - 2013 - Archive for Mathematical Logic 52 (5-6):631-658.
    This article investigates a theory of type assignment (assigning types to lambda terms) called ETA which is intermediate in strength between the simple theory of type assignment and strong polymorphic theories like Girard’s F (Proofs and types. Cambridge University Press, Cambridge, 1989). It is like the simple theory and unlike F in that the typability and type-checking problems are solvable with respect to ETA. This is proved in the article along with three other main results: (1) all primitive recursive functionals (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Extensions of the Finitist Point of View.Matthias Schirn & Karl-Georg Niebergall - 2001 - History and Philosophy of Logic 22 (3):135-161.
    Hilbert developed his famous finitist point of view in several essays in the 1920s. In this paper, we discuss various extensions of it, with particular emphasis on those suggested by Hilbert and Bernays in Grundlagen der Mathematik (vol. I 1934, vol. II 1939). The paper is in three sections. The first deals with Hilbert's introduction of a restricted ? -rule in his 1931 paper ?Die Grundlegung der elementaren Zahlenlehre?. The main question we discuss here is whether the finitist (meta-)mathematician would (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Elementary realizability.Zlatan Damnjanovic - 1997 - Journal of Philosophical Logic 26 (3):311-339.
    A realizability notion that employs only Kalmar elementary functions is defined, and, relative to it, the soundness of EA-(Π₁⁰-IR), a fragment of Heyting Arithmetic (HA) with names and axioms for all elementary functions and induction rule restricted to Π₁⁰ formulae, is proved. As a corollary, it is proved that the provably recursive functions of EA-(Π₁⁰-IR) are precisely the elementary functions. Elementary realizability is proposed as a model of strict arithmetic constructivism, which allows only those constructive procedures for which the amount (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computational Complexity Theory and the Philosophy of Mathematics†.Walter Dean - 2019 - Philosophia Mathematica 27 (3):381-439.
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the $\mathbf{P} \neq \mathbf{NP}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Herbrand analyses.Wilfried Sieg - 1991 - Archive for Mathematical Logic 30 (5-6):409-441.
    Herbrand's Theorem, in the form of $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\exists } $$ -inversion lemmata for finitary and infinitary sequent calculi, is the crucial tool for the determination of the provably total function(al)s of a variety of theories. The theories are (second order extensions of) fragments of classical arithmetic; the classes of provably total functions include the elements of the Polynomial Hierarchy, the Grzegorczyk Hierarchy, and the extended Grzegorczyk Hierarchy $\mathfrak{E}^\alpha $ , α < ε0. A subsidiary aim of the paper is to show (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Classifying the provably total functions of pa.Andreas Weiermann - 2006 - Bulletin of Symbolic Logic 12 (2):177-190.
    We give a self-contained and streamlined version of the classification of the provably computable functions of PA. The emphasis is put on illuminating as well as seems possible the intrinsic computational character of the standard cut elimination process. The article is intended to be suitable for teaching purposes and just requires basic familiarity with PA and the ordinals below ε0. (Familiarity with a cut elimination theorem for a Gentzen or Tait calculus is helpful but not presupposed).
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Investigations on slow versus fast growing: How to majorize slow growing functions nontrivially by fast growing ones. [REVIEW]Andreas Weiermann - 1995 - Archive for Mathematical Logic 34 (5):313-330.
    Let T(Ω) be the ordinal notation system from Buchholz-Schütte (1988). [The order type of the countable segmentT(Ω)0 is — by Rathjen (1988) — the proof-theoretic ordinal the proof-theoretic ordinal ofACA 0 + (Π 1 l −TR).] In particular let ↦Ω a denote the enumeration function of the infinite cardinals and leta ↦ ψ0 a denote the partial collapsing operation on T(Ω) which maps ordinals of T(Ω) into the countable segment TΩ 0 of T(Ω). Assume that the (fast growing) extended Grzegorczyk (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Number theory and elementary arithmetic.Jeremy Avigad - 2003 - Philosophia Mathematica 11 (3):257-284.
    is a fragment of first-order aritlimetic so weak that it cannot prove the totality of an iterated exponential fimction. Surprisingly, however, the theory is remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Characterizing the elementary recursive functions by a fragment of Gödel's T.Arnold Beckmann & Andreas Weiermann - 2000 - Archive for Mathematical Logic 39 (7):475-491.
    Let T be Gödel's system of primitive recursive functionals of finite type in a combinatory logic formulation. Let $T^{\star}$ be the subsystem of T in which the iterator and recursor constants are permitted only when immediately applied to type 0 arguments. By a Howard-Schütte-style argument the $T^{\star}$ -derivation lengths are classified in terms of an iterated exponential function. As a consequence a constructive strong normalization proof for $T^{\star}$ is obtained. Another consequence is that every $T^{\star}$ -representable number-theoretic function is elementary (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Combinatory logic with polymorphic types.William R. Stirton - 2022 - Archive for Mathematical Logic 61 (3):317-343.
    Sections 1 through 4 define, in the usual inductive style, various classes of object including one which is called the “combinatory terms of polymorphic type”. Section 5 defines a reduction relation on these terms. Section 6 shows that the weak normalizability of the combinatory terms of polymorphic type entails the weak normalizability of the lambda terms of polymorphic type. The entailment is not vacuous, because the combinatory terms of polymorphic type are indeed weakly normalizable, as is proven in Sect. 7 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Simply terminating rewrite systems with long derivations.Ingo Lepper - 2004 - Archive for Mathematical Logic 43 (1):1-18.
    .A term rewrite system is called simply terminating if its termination can be shown by means of a simplification ordering. According to a result of Weiermann, the derivation length function of any simply terminating finite rewrite system is eventually dominated by a Hardy function of ordinal less than the small Veblen ordinal. This bound had appeared to be of rather theoretical nature, because all known examples had had multiple recursive complexities, until recently Touzet constructed simply terminating examples with complexities beyond (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How to assign ordinal numbers to combinatory terms with polymorphic types.William R. Stirton - 2012 - Archive for Mathematical Logic 51 (5):475-501.
    The article investigates a system of polymorphically typed combinatory logic which is equivalent to Gödel’s T. A notion of (strong) reduction is defined over terms of this system and it is proved that the class of well-formed terms is closed under both bracket abstraction and reduction. The main new result is that the number of contractions needed to reduce a term to normal form is computed by an ε 0-recursive function. The ordinal assignments used to obtain this result are also (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Slow versus fast growing.Andreas Weiermann - 2002 - Synthese 133 (1-2):13 - 29.
    We survey a selection of results about majorization hierarchies. The main focus is on classical and recent results about the comparison between the slow and fast growing hierarchies.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Some Hierarchies of Primitive Recursive Functions on Term Algebras.Klaus-Hilmar Sprenger - 1997 - Mathematical Logic Quarterly 43 (2):251-286.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)A sharpened version of McAloon's theorem on initial segments of models of IΔ0.Paola D'Aquino - 1993 - Annals of Pure and Applied Logic 61 (1-2):49-62.
    A generalization is given of McAloon's result on initial segments ofmodels of GlΔ0, the fragment of Peano Arithmetic where the induction scheme is restricted to formulas with bounded quantifiers.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On axiom schemes for T-provably $${\Delta_{1}}$$ Δ 1 formulas.A. Cordón-Franco, A. Fernández-Margarit & F. F. Lara-Martín - 2014 - Archive for Mathematical Logic 53 (3):327-349.
    This paper investigates the status of the fragments of Peano Arithmetic obtained by restricting induction, collection and least number axiom schemes to formulas which are $${\Delta_1}$$ provably in an arithmetic theory T. In particular, we determine the provably total computable functions of this kind of theories. As an application, we obtain a reduction of the problem whether $${I\Delta_0 + \neg \mathit{exp}}$$ implies $${B\Sigma_1}$$ to a purely recursion-theoretic question.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Local induction and provably total computable functions.Andrés Cordón-Franco & F. Félix Lara-Martín - 2014 - Annals of Pure and Applied Logic 165 (9):1429-1444.
    Let Iπ2 denote the fragment of Peano Arithmetic obtained by restricting the induction scheme to parameter free Π2Π2 formulas. Answering a question of R. Kaye, L. Beklemishev showed that the provably total computable functions of Iπ2 are, precisely, the primitive recursive ones. In this work we give a new proof of this fact through an analysis of certain local variants of induction principles closely related to Iπ2. In this way, we obtain a more direct answer to Kaye's question, avoiding the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation