Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)A Decision Method for Elementary Algebra and Geometry.Alfred Tarski - 1949 - Journal of Symbolic Logic 14 (3):188-188.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • (1 other version)A Decision Method for Elementary Algebra and Geometry.Alfred Tarski - 1952 - Journal of Symbolic Logic 17 (3):207-207.
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • A Non-Standard Model for a Free Variable Fragment of Number Theory.J. C. Shepherdson - 1965 - Journal of Symbolic Logic 30 (3):389-390.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Some weak fragments of {${\rm HA}$} and certain closure properties.Morteza Moniri & Mojtaba Moniri - 2002 - Journal of Symbolic Logic 67 (1):91-103.
    We show that Intuitionistic Open Induction iop is not closed under the rule DNS(∃ - 1 ). This is established by constructing a Kripke model of iop + $\neg L_y(2y > x)$ , where $L_y(2y > x)$ is universally quantified on x. On the other hand, we prove that iop is equivalent with the intuitionistic theory axiomatized by PA - plus the scheme of weak ¬¬LNP for open formulas, where universal quantification on the parameters precedes double negation. We also show (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computable structures and the hyperarithmetical hierarchy.C. J. Ash - 2000 - New York: Elsevier. Edited by J. Knight.
    This book describes a program of research in computable structure theory. The goal is to find definability conditions corresponding to bounds on complexity which persist under isomorphism. The results apply to familiar kinds of structures (groups, fields, vector spaces, linear orderings Boolean algebras, Abelian p-groups, models of arithmetic). There are many interesting results already, but there are also many natural questions still to be answered. The book is self-contained in that it includes necessary background material from recursion theory (ordinal notations, (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Every real closed field has an integer part.M. H. Mourgues & J. P. Ressayre - 1993 - Journal of Symbolic Logic 58 (2):641-647.
    Let us call an integer part of an ordered field any subring such that every element of the field lies at distance less than 1 from a unique element of the ring. We show that every real closed field has an integer part.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)A recursive nonstandard model of normal open induction.Alessandro Berarducci & Margarita Otero - 1996 - Journal of Symbolic Logic 61 (4):1228-1241.
    Models of normal open induction are those normal discretely ordered rings whose nonnegative part satisfy Peano's axioms for open formulas in the language of ordered semirings. (Where normal means integrally closed in its fraction field.) In 1964 Shepherdson gave a recursive nonstandard model of open induction. His model is not normal and does not have any infinite prime elements. In this paper we present a recursive nonstandard model of normal open induction with an unbounded set of infinite prime elements.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Real closed fields and models of Peano arithmetic.P. D'Aquino, J. F. Knight & S. Starchenko - 2010 - Journal of Symbolic Logic 75 (1):1-11.
    Shepherdson [14] showed that for a discrete ordered ring I, I is a model of IOpen iff I is an integer part of a real closed ordered field. In this paper, we consider integer parts satisfying PA. We show that if a real closed ordered field R has an integer part I that is a nonstandard model of PA (or even IΣ₄), then R must be recursively saturated. In particular, the real closure of I, RC (I), is recursively saturated. We (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)A Recursive Nonstandard Model Of Normal Open Induction.Alessandro Berarducci & Margarita Otero - 1996 - Journal of Symbolic Logic 61 (3):1228-1241.
    Models of normal open induction are those normal discretely ordered rings whose nonnegative part satisfy Peano's axioms for open formulas in the language of ordered semirings. In 1964 Shepherdson gave a recursive nonstandard model of open induction. His model is not normal and does not have any infinite prime elements. In this paper we present a recursive nonstandard model of normal open induction with an unbounded set of infinite prime elements.
    Download  
     
    Export citation  
     
    Bookmark   1 citation