Switch to: References

Add citations

You must login to add citations.
  1. Logic in mathematics and computer science.Richard Zach - forthcoming - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger (eds.), Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.
    Logic has pride of place in mathematics and its 20th century offshoot, computer science. Modern symbolic logic was developed, in part, as a way to provide a formal framework for mathematics: Frege, Peano, Whitehead and Russell, as well as Hilbert developed systems of logic to formalize mathematics. These systems were meant to serve either as themselves foundational, or at least as formal analogs of mathematical reasoning amenable to mathematical study, e.g., in Hilbert’s consistency program. Similar efforts continue, but have been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Representations of Intended Structures in Foundational Theories.Neil Barton, Moritz Müller & Mihai Prunescu - 2022 - Journal of Philosophical Logic 51 (2):283-296.
    Often philosophers, logicians, and mathematicians employ a notion of intended structure when talking about a branch of mathematics. In addition, we know that there are foundational mathematical theories that can find representatives for the objects of informal mathematics. In this paper, we examine how faithfully foundational theories can represent intended structures, and show that this question is closely linked to the decidability of the theory of the intended structure. We argue that this sheds light on the trade-off between expressive power (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Probabilistic logic of quantum observations.A. Sernadas, J. Rasga, C. Sernadas, L. Alcácer & A. B. Henriques - 2019 - Logic Journal of the IGPL 27 (3):328-370.
    A probabilistic propositional logic, endowed with a constructor for asserting compatibility of diagonalisable and bounded observables, is presented and illustrated for reasoning about the random results of projective measurements made on a given quantum state. Simultaneous measurements are assumed to imply that the underlying observables are compatible. A sound and weakly complete axiomatisation is provided relying on the decidable first-order theory of real closed ordered fields. The proposed logic is proved to be a conservative extension of classical propositional logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Tarski.Benedict Eastaugh - 2017 - In Alex Malpass & Marianna Antonutti Marfori (eds.), The History of Philosophical and Formal Logic: From Aristotle to Tarski. New York: Bloomsbury Publishing. pp. 293-313.
    Alfred Tarski was one of the greatest logicians of the twentieth century. His influence comes not merely through his own work but from the legion of students who pursued his projects, both in Poland and Berkeley. This chapter focuses on three key areas of Tarski's research, beginning with his groundbreaking studies of the concept of truth. Tarski's work led to the creation of the area of mathematical logic known as model theory and prefigured semantic approaches in the philosophy of language (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Carnap’s conventionalism in geometry.Stefan Lukits - 2013 - Grazer Philosophische Studien 88 (1):123-138.
    Against Thomas Mormann's argument that differential topology does not support Carnap's conventionalism in geometry we show their compatibility. However, Mormann's emphasis on the entanglement that characterizes topology and its associated metrics is not misplaced. It poses questions about limits of empirical inquiry. For Carnap, to pose a question is to give a statement with the task of deciding its truth. Mormann's point forces us to introduce more clarity to what it means to specify the task that decides between competing hypotheses (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Description of all functions definable by formulæ of the 2nd order intuitionistic propositional calculus on some linear Heyting algebras.Dimitri Pataraia - 2006 - Journal of Applied Non-Classical Logics 16 (3-4):457-483.
    Explicit description of maps definable by formulæ of the second order intuitionistic propositional calculus is given on two classes of linear Heyting algebras—the dense ones and the ones which possess successors. As a consequence, it is shown that over these classes every formula is equivalent to a quantifier free formula in the dense case, and to a formula with quantifiers confined to the applications of the successor in the second case.
    Download  
     
    Export citation  
     
    Bookmark  
  • Twin Paradox and the Logical Foundation of Relativity Theory.Judit X. Madarász, István Németi & Gergely Székely - 2006 - Foundations of Physics 36 (5):681-714.
    We study the foundation of space-time theory in the framework of first-order logic (FOL). Since the foundation of mathematics has been successfully carried through (via set theory) in FOL, it is not entirely impossible to do the same for space-time theory (or relativity). First we recall a simple and streamlined FOL-axiomatization Specrel of special relativity from the literature. Specrel is complete with respect to questions about inertial motion. Then we ask ourselves whether we can prove the usual relativistic properties of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Quantifier elimination for elementary geometry and elementary affine geometry.Rafael Grimson, Bart Kuijpers & Walied Othman - 2012 - Mathematical Logic Quarterly 58 (6):399-416.
    We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry , based on extending equation image and equation image, respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show that the associated theories admit effective quantifier elimination.
    Download  
     
    Export citation  
     
    Bookmark  
  • Some new results on decidability for elementary algebra and geometry.Robert M. Solovay, R. D. Arthan & John Harrison - 2012 - Annals of Pure and Applied Logic 163 (12):1765-1802.
    We carry out a systematic study of decidability for theories of real vector spaces, inner product spaces, and Hilbert spaces and of normed spaces, Banach spaces and metric spaces, all formalized using a 2-sorted first-order language. The theories for list turn out to be decidable while the theories for list are not even arithmetical: the theory of 2-dimensional Banach spaces, for example, has the same many-one degree as the set of truths of second-order arithmetic.We find that the purely universal and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Continuum, name and paradox.Vojtěch Kolman - 2010 - Synthese 175 (3):351 - 367.
    The article deals with Cantor's argument for the non-denumerability of reals somewhat in the spirit of Lakatos' logic of mathematical discovery. At the outset Cantor's proof is compared with some other famous proofs such as Dedekind's recursion theorem, showing that rather than usual proofs they are resolutions to do things differently. Based on this I argue that there are "ontologically" safer ways of developing the diagonal argument into a full-fledged theory of continuum, concluding eventually that famous semantic paradoxes based on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • logicism, intuitionism, and formalism - What has become of them?Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.) - 2008 - Berlin, Germany: Springer.
    The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Completeness and categoricty, part II: 20th century metalogic to 21st century semantics.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):77-92.
    This paper is the second in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The mathematical development of set theory from Cantor to Cohen.Akihiro Kanamori - 1996 - Bulletin of Symbolic Logic 2 (1):1-71.
    Set theory is an autonomous and sophisticated field of mathematics, enormously successful not only at its continuing development of its historical heritage but also at analyzing mathematical propositions cast in set-theoretic terms and gauging their consistency strength. But set theory is also distinguished by having begun intertwined with pronounced metaphysical attitudes, and these have even been regarded as crucial by some of its great developers. This has encouraged the exaggeration of crises in foundations and of metaphysical doctrines in general. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Nominalism and Immutability.Daniel Berntson - manuscript
    Can we do science without numbers? How much contingency is there? These seemingly unrelated questions--one in the philosophy of math and science and the other in metaphysics--share an unexpectedly close connection. For as it turns out, a radical answer to the second leads to a breakthrough on the first. The radical answer is new view about modality called compossible immutabilism. The breakthrough is a new strategy for doing science without numbers. One of the chief benefits of the new strategy is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Case for the Irreducibility of Geometry to Algebra†.Victor Pambuccian & Celia Schacht - 2022 - Philosophia Mathematica 30 (1):1-31.
    This paper provides a definitive answer, based on considerations derived from first-order logic, to the question regarding the status of elementary geometry, whether elementary geometry can be reduced to algebra. The answer we arrive at is negative, and is based on a series of structural questions that can be asked only inside the geometric formal theory, as well as the consideration of reverse geometry, which is the art of finding minimal axiom systems strong enough to prove certain geometrical theorems, given (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Generality, Letter-Labels, and All That.F. Acerbi - 2020 - Phronesis 65 (1):27-75.
    This article focusses on the generality of the entities involved in a geometric proof of the kind found in ancient Greek treatises: it shows that the standard modern translation of Greek mathematical propositions falsifies crucial syntactical elements, and employs an incorrect conception of the denotative letters in a Greek geometric proof; epigraphic evidence is adduced to show that these denotative letters are ‘letter-labels’. On this basis, the article explores the consequences of seeing that a Greek mathematical proposition is fully general, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Decision and optimization problems in the unreliable-circuit logic.J. Rasga, C. Sernadas, P. Mateus & A. Sernadas - 2017 - Logic Journal of the IGPL 25 (3):283-308.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert†.John T. Baldwin - 2018 - Philosophia Mathematica 26 (3):346-374.
    We give a general account of the goals of axiomatization, introducing a variant on Detlefsen’s notion of ‘complete descriptive axiomatization’. We describe how distinctions between the Greek and modern view of number, magnitude, and proportion impact the interpretation of Hilbert’s axiomatization of geometry. We argue, as did Hilbert, that Euclid’s propositions concerning polygons, area, and similar triangles are derivable from Hilbert’s first-order axioms. We argue that Hilbert’s axioms including continuity show much more than the geometrical propositions of Euclid’s theorems and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Decidable algebraic fields.Moshe Jarden & Alexandra Shlapentokh - 2017 - Journal of Symbolic Logic 82 (2):474-488.
    Download  
     
    Export citation  
     
    Bookmark  
  • Computing strength of structures related to the field of real numbers.Gregory Igusa, Julia F. Knight & Noah David Schweber - 2017 - Journal of Symbolic Logic 82 (1):137-150.
    In [8], the third author defined a reducibility$\le _w^{\rm{*}}$that lets us compare the computing power of structures of any cardinality. In [6], the first two authors showed that the ordered field of reals${\cal R}$lies strictly above certain related structures. In the present paper, we show that$\left \equiv _w^{\rm{*}}{\cal R}$. More generally, for the weak-looking structure${\cal R}$ℚconsisting of the real numbers with just the ordering and constants naming the rationals, allo-minimal expansions of${\cal R}$ℚare equivalent to${\cal R}$. Using this, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Interpretability in Robinson's Q.Fernando Ferreira & Gilda Ferreira - 2013 - Bulletin of Symbolic Logic 19 (3):289-317.
    Edward Nelson published in 1986 a book defending an extreme formalist view of mathematics according to which there is animpassable barrierin the totality of exponentiation. On the positive side, Nelson embarks on a program of investigating how much mathematics can be interpreted in Raphael Robinson's theory of arithmetic. In the shadow of this program, some very nice logical investigations and results were produced by a number of people, not only regarding what can be interpreted inbut also what cannot be so (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Unendliche Formeln in Der Modelltheorie.Erwin Engeler - 1961 - Mathematical Logic Quarterly 7 (7-10):154-160.
    Download  
     
    Export citation  
     
    Bookmark  
  • Computability of String Functions Over Algebraic Structures Armin Hemmerling.Armin Hemmerling - 1998 - Mathematical Logic Quarterly 44 (1):1-44.
    We present a model of computation for string functions over single-sorted, total algebraic structures and study some basic features of a general theory of computability within this framework. Our concept generalizes the Blum-Shub-Smale setting of computability over the reals and other rings. By dealing with strings of arbitrary length instead of tuples of fixed length, some suppositions of deeper results within former approaches to generalized recursion theory become superfluous. Moreover, this gives the basis for introducing computational complexity in a BSS-like (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The Elementary Theory of Interval Real Numbers.Stephen D. Comer - 1985 - Mathematical Logic Quarterly 31 (1‐6):89-95.
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic and philosophy of mathematics in the early Husserl.Stefania Centrone - 2009 - New York: Springer.
    This volume will be of particular interest to researchers working in the history, and in the philosophy, of logic and mathematics, and more generally, to ...
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • (1 other version)Completeness and Categoricity. Part I: Nineteenth-century Axiomatics to Twentieth-century Metalogic.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):1-30.
    This paper is the first in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • First order common knowledge logics.Frank Wolter - 2000 - Studia Logica 65 (2):249-271.
    In this paper we investigate first order common knowledge logics; i.e., modal epistemic logics based on first order logic with common knowledge operators. It is shown that even rather weak fragments of first order common knowledge logics are not recursively axiomatizable. This applies, for example, to fragments which allow to reason about names only; that is to say, fragments the first order part of which is based on constant symbols and the equality symbol only. Then formal properties of "quantifying into" (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Some recent essays in the history of the philosophy of mathematics: A critical review. [REVIEW]William W. Tait - 1993 - Synthese 96 (2):293 - 331.
    Download  
     
    Export citation  
     
    Bookmark  
  • Address at the Princeton University Bicentennial Conference on Problems of Mathematics (December 17–19, 1946), By Alfred Tarski.Alfred Tarski & Hourya Sinaceur - 2000 - Bulletin of Symbolic Logic 6 (1):1-44.
    This article presents Tarski's Address at the Princeton Bicentennial Conference on Problems of Mathematics, together with a separate summary. Two accounts of the discussion which followed are also included. The central topic of the Address and of the discussion is decision problems. The introductory note gives information about the Conference, about the background of the subjects discussed in the Address, and about subsequent developments to these subjects.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Mathematical significance of consistency proofs.G. Kreisel - 1958 - Journal of Symbolic Logic 23 (2):155-182.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • A decision procedure for probability calculus with applications.Branden Fitelson - 2008 - Review of Symbolic Logic 1 (1):111-125.
    (new version: 10/30/07). Click here to download the companion Mathematica 6 notebook that goes along with this paper.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Second-order logic and foundations of mathematics.Jouko Väänänen - 2001 - Bulletin of Symbolic Logic 7 (4):504-520.
    We discuss the differences between first-order set theory and second-order logic as a foundation for mathematics. We analyse these languages in terms of two levels of formalization. The analysis shows that if second-order logic is understood in its full semantics capable of characterizing categorically central mathematical concepts, it relies entirely on informal reasoning. On the other hand, if it is given a weak semantics, it loses its power in expressing concepts categorically. First-order set theory and second-order logic are not radically (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Von Neumann, Gödel and complexity theory.Alasdair Urquhart - 2010 - Bulletin of Symbolic Logic 16 (4):516-530.
    Around 1989, a striking letter written in March 1956 from Kurt Gödel to John von Neumann came to light. It poses some problems about the complexity of algorithms; in particular, it asks a question that can be seen as the first formulation of the P=?NP question. This paper discusses some of the background to this letter, including von Neumann's own ideas on complexity theory. Von Neumann had already raised explicit questions about the complexity of Tarski's decision procedure for elementary algebra (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Probability logic in the twentieth century.Theodore Hailperin - 1991 - History and Philosophy of Logic 12 (1):71-110.
    This essay describes a variety of contributions which relate to the connection of probability with logic. Some are grand attempts at providing a logical foundation for probability and inductive inference. Others are concerned with probabilistic inference or, more generally, with the transmittance of probability through the structure (logical syntax) of language. In this latter context probability is considered as a semantic notion playing the same role as does truth value in conventional logic. At the conclusion of the essay two fully (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Growing methods for constructing recursive deterministic perceptron neural networks and knowledge extraction.M. Tajine & D. Elizondo - 1998 - Artificial Intelligence 102 (2):295-322.
    Download  
     
    Export citation  
     
    Bookmark  
  • Interpretations With Parameters.L. W. Szczerba - 1980 - Mathematical Logic Quarterly 26 (1-6):35-39.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Sharpening complexity results in quantified probability logic.Stanislav O. Speranski - forthcoming - Logic Journal of the IGPL.
    We shall be concerned with two natural expansions of the quantifier-free ‘polynomial’ probability logic of Fagin et al. (A logic for reasoning about probabilities, Inform Comput, 1990; 87:78–128). One of these, denoted by ${\textsf{QPL}}^{\textrm{e}}$, is obtained by adding quantifiers over arbitrary events, and the other, denoted by $\underline{{\textsf{QPL}}}^{\textrm{e}}$, uses quantifiers over propositional formulas—or equivalently, over events expressible by such formulas. The earlier proofs of the complexity lower bound results for ${\textsf{QPL}}^{\textrm{e}}$ and $\underline{{\textsf{QPL}}}^{\textrm{e}}$ relied heavily on multiplication, and therefore on the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A modal logic framework for reasoning about comparative distances and topology.Mikhail Sheremet, Frank Wolter & Michael Zakharyaschev - 2010 - Annals of Pure and Applied Logic 161 (4):534-559.
    We propose and investigate a uniform modal logic framework for reasoning about topology and relative distance in metric and more general distance spaces, thus enabling the comparison and combination of logics from distinct research traditions such as Tarski’s for topological closure and interior, conditional logics, and logics of comparative similarity. This framework is obtained by decomposing the underlying modal-like operators into first-order quantifier patterns. We then show that quite a powerful and natural fragment of the resulting first-order logic can be (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)On predicates in algebraically closed fields.Abraham Robinson - 1954 - Journal of Symbolic Logic 19 (2):103-114.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Metamathematical problems.Abraham Robinson - 1973 - Journal of Symbolic Logic 38 (3):500-516.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The ordered field of real numbers and logics with Malitz quantifiers.Andreas Rapp - 1985 - Journal of Symbolic Logic 50 (2):380-389.
    Let ℜ = (R, + R , ...) be the ordered field of real numbers. It will be shown that the L(Q n 1 ∣ n ≥ 1)-theory of ℜ is decidable, where Q n 1 denotes the Malitz quantifier of order n in the ℵ 1 -interpretation.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Against the Judgment-Dependence of Mathematics and Logic.Alexander Paseau - 2012 - Erkenntnis 76 (1):23-40.
    Although the case for the judgment-dependence of many other domains has been pored over, surprisingly little attention has been paid to mathematics and logic. This paper presents two dilemmas for a judgment-dependent account of these areas. First, the extensionality-substantiality dilemma: in each case, either the judgment-dependent account is extensionally inadequate or it cannot meet the substantiality condition (roughly: non-vacuous specification). Second, the extensionality-extremality dilemma: in each case, either the judgment-dependent account is extensionally inadequate or it cannot meet the extremality condition (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Weak essentially undecidable theories of concatenation, part II.Juvenal Murwanashyaka - 2024 - Archive for Mathematical Logic 63 (3):353-390.
    We show that we can interpret concatenation theories in arithmetical theories without coding sequences by identifying binary strings with \(2\times 2\) matrices with determinant 1.
    Download  
     
    Export citation  
     
    Bookmark  
  • Elementary categorial logic, predicates of variable degree, and theory of quantity.Brent Mundy - 1989 - Journal of Philosophical Logic 18 (2):115 - 140.
    Developing some suggestions of Ramsey (1925), elementary logic is formulated with respect to an arbitrary categorial system rather than the categorial system of Logical Atomism which is retained in standard elementary logic. Among the many types of non-standard categorial systems allowed by this formalism, it is argued that elementary logic with predicates of variable degree occupies a distinguished position, both for formal reasons and because of its potential value for application of formal logic to natural language and natural science. This (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Hilbert's 17th Problem for Real Closed Rings.Larry Mathews - 1994 - Mathematical Logic Quarterly 40 (4):445-454.
    We recall the characterisation of positive definite polynomial functions over a real closed ring due to Dickmann, and give a new proof of this result, based upon ideas of Abraham Robinson. In addition we isolate the class of convexly ordered valuation rings for which this characterisation holds.
    Download  
     
    Export citation  
     
    Bookmark  
  • Finitude simple et structures o-minimales (finiteness property implies o-minimality).Jean-Marie Lion - 2002 - Journal of Symbolic Logic 67 (4):1616-1622.
    We consider a family of differential algebras of real functions on real euclidean spaces, stable under right composition by affine maps. We prove that under a weak finiteness property, there is an o-minimal expansion of the ordered field of real numbers in which all these functions are definable.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Topological elementary equivalence of closed semi-algebraic sets in the real plane.Bart Kuijpers, Jan Paredaens & Jan Van den Bussche - 2000 - Journal of Symbolic Logic 65 (4):1530-1555.
    We investigate topological properties of subsets S of the real plane, expressed by first-order logic sentences in the language of the reals augmented with a binary relation symbol for S. Two sets are called topologically elementary equivalent if they have the same such first-order topological properties. The contribution of this paper is a natural and effective characterization of topological elementary equivalence of closed semi-algebraic sets.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the elimination of Malitz quantifiers over Archimedian real closed fields.Peter Koepke - 1989 - Archive for Mathematical Logic 28 (3):167-171.
    Download  
     
    Export citation  
     
    Bookmark  
  • On tarski’s assumptions.Jaakko Hintikka - 2005 - Synthese 142 (3):353-369.
    Download  
     
    Export citation  
     
    Bookmark   1 citation