Switch to: Citations

Add references

You must login to add references.
  1. Quantum Superpositions and the Representation of Physical Reality Beyond Measurement Outcomes and Mathematical Structures.Christian de Ronde - 2016 - Foundations of Science 23 (4):621-648.
    In this paper we intend to discuss the importance of providing a physical representation of quantum superpositions which goes beyond the mere reference to mathematical structures and measurement outcomes. This proposal goes in the opposite direction to the project present in orthodox contemporary philosophy of physics which attempts to “bridge the gap” between the quantum formalism and common sense “classical reality”—precluding, right from the start, the possibility of interpreting quantum superpositions through non-classical notions. We will argue that in order to (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Space is blue and birds fly through it.Carlo Rovelli - unknown
    Quantum mechanics is not about 'quantum states': it is about values of physical variables. I give a short fresh presentation and update on the *relational* perspective on the theory, and a comment on its philosophical implications.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Topos Theoretic Quantum Realism.Benjamin Eva - 2017 - British Journal for the Philosophy of Science 68 (4):1149-1181.
    ABSTRACT Topos quantum theory is standardly portrayed as a kind of ‘neo-realist’ reformulation of quantum mechanics.1 1 In this article, I study the extent to which TQT can really be characterized as a realist formulation of the theory, and examine the question of whether the kind of realism that is provided by TQT satisfies the philosophical motivations that are usually associated with the search for a realist reformulation of quantum theory. Specifically, I show that the notion of the quantum state (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On Physics and Philosophy.Bernard D'Espagnat - 2006 - Princeton: Princeton University Press.
    Among the great ironies of quantum mechanics is not only that its conceptual foundations seem strange even to the physicists who use it, but that philosophers have largely ignored it. Here, Bernard d'Espagnat argues that quantum physics--by casting doubts on once hallowed concepts such as space, material objects, and causality-demands serious reconsideration of most of traditional philosophy. On Physics and Philosophy is an accessible, mathematics-free reflection on the philosophical meaning of the quantum revolution, by one of the world's leading authorities (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The modes of physical properties in the logical foundations of physics.Sonja Smets - 2005 - Logic and Logical Philosophy 14 (1):37-53.
    We present a conceptual analysis of the notions of actual physical property and potential physical property as used by theoretical physicists/mathematicians working in the domain of operational quantum logic. We investigate how these notions are being used today and what role they play in the specified field of research. In order to do so, we will give a brief introduction to this area of research and explain it as a part of the discipline known as “mathematical metascience”. An in depth (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?Albert Einstein, Boris Podolsky & Nathan Rosen - 1935 - Physical Review (47):777-780.
    Download  
     
    Export citation  
     
    Bookmark   769 citations  
  • What is quantum mechanics trying to tell us?David Mermin - 1998 - American Journal of Physics 66 (9):753-767.
    I explore whether it is possible to make sense of the quantum mechanical description of physical reality by taking the proper subject of physics to be correlation and only correlation, and by separating the problem of understanding the nature of quantum mechanics from the hard problem of understanding the nature of objective probability in individual systems, and the even harder problem of understanding the nature of conscious awareness. The resulting perspective on quantum mechanics is supported by some elementary but insufficiently (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Information, physics, quantum: the search for links.John Archibald Wheeler - 1989 - In Wheeler John Archibald (ed.), Proceedings III International Symposium on Foundations of Quantum Mechanics. pp. 354-358.
    This report reviews what quantum physics and information theory have to tell us about the age-old question, How come existence? No escape is evident from four conclusions: (1) The world cannot be a giant machine, ruled by any preestablished continuum physical law. (2) There is no such thing at the microscopic level as space or time or spacetime continuum. (3) The familiar probability function or functional, and wave equation or functional wave equation, of standard quantum theory provide mere continuum idealizations (...)
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • A topos perspective on the kochen-Specker theorem: I. Quantum states as generalised valuations.Chris Isham & Jeremy Butterfield - unknown
    Any attempt to construct a realist interpretation of quantum theory founders on the Kochen-Specker theorem, which asserts the impossibility of assigning values to quantum quantities in a way that preserves functional relations between them. We construct a new type of valuation which is defined on all operators, and which respects an appropriate version of the functional composition principle. The truth-values assigned to propositions are (i) contextual; and (ii) multi-valued, where the space of contexts and the multi-valued logic for each context (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • The Principles of Quantum Mechanics.P. A. M. Dirac - 1936 - Revue de Métaphysique et de Morale 43 (2):5-5.
    Download  
     
    Export citation  
     
    Bookmark   273 citations  
  • The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.
    Download  
     
    Export citation  
     
    Bookmark   496 citations  
  • Quantum Mechanics, Chance and Modality.Dennis Dieks - 2010 - Philosophica 83 (1):117-137.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)Conceptual foundations of quantum mechanics.Bernard D' Espagnat - 1976 - Redwood City, Calif.: Addison-Wesley, Advanced Book Program.
    Conceptual Foundations of Quantum Mechanics provides a detailed view of the conceptual foundations and problems of quantum physics, and a clear and comprehensive account of the fundamental physical implications of the quantum formalism. This book deals with nonseparability, hidden variable theories, measurement theories and several related problems. Mathematical arguments are presented with an emphasis on simple but adequately representative cases. The conclusion incorporates a description of a set of relationships and concepts that could compose a legitimate view of the world.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • A topos perspective on the kochen-Specker theorem: III. Von Neumann algebras as the base category.John Hamilton, Chris Isham & Jeremy Butterfield - unknown
    We extend the topos-theoretic treatment given in previous papers of assigning values to quantities in quantum theory, and of related issues such as the Kochen-Specker theorem. This extension has two main parts: the use of von Neumann algebras as a base category (Section 2); and the relation of our generalized valuations to (i) the assignment to quantities of intervals of real numbers, and (ii) the idea of a subobject of the coarse-graining presheaf (Section 3).
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Physical reality.Max Born - 1953 - Philosophical Quarterly 3 (11):139-149.
    The notion of reality in the physical world has become, during the last century, somewhat problematic. The contrast between the simple and obvious reality of the innumerable instruments, machines, engines, and gadgets produced by our technological industry, which is applied physics, and of the vague and abstract reality of the fundamental concepts of physical science, as forces and fields, particles and quanta, is doubtlessly bewildering. There has already developed a gap between pure and applied science and between the groups of (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • The Scientific Image.William Demopoulos & Bas C. van Fraassen - 1982 - Philosophical Review 91 (4):603.
    Download  
     
    Export citation  
     
    Bookmark   1797 citations  
  • Quantum probability from subjective likelihood: Improving on Deutsch's proof of the probability rule.David Wallace - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):311-332.
    I present a proof of the quantum probability rule from decision-theoretic assumptions, in the context of the Everett interpretation. The basic ideas behind the proof are those presented in Deutsch's recent proof of the probability rule, but the proof is simpler and proceeds from weaker decision-theoretic assumptions. This makes it easier to discuss the conceptual ideas involved in the proof, and to show that they are defensible.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • (2 other versions)Relativity: The Special and General Theory.Albert Einstein - 1921 - Routledge.
    Relativity is the most important scientific idea of the twentieth century. Albert Einstein is the unquestioned founder of modern physics. His Special and General theories of Relativity introduced the idea to the world. In this classic short book he explains clearly, using the minimum amount of mathematical terms, the basic ideas and principles of his theory of Relativity. Unsurpassed by any subsequent books on Relativity, this remains the most popular and useful exposition of Einstein's immense contribution to human knowledge.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Quantum Logic.Peter Mittelstaedt - 1978 - Dordrecht, Netherland: Reidel.
    In 1936, G. Birkhoff and J. v. Neumann published an article with the title The logic of quantum mechanics'. In this paper, the authors demonstrated that in quantum mechanics the most simple observables which correspond to yes-no propositions about a quantum physical system constitute an algebraic structure, the most important proper ties of which are given by an orthocomplemented and quasimodular lattice Lq. Furthermore, this lattice of quantum mechanical proposi tions has, from a formal point of view, many similarities with (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Logos Categorical Approach to Quantum Mechanics: I. Kochen-Specker Contextuality and Global Intensive Valuations.Christian de Ronde & Cesar Massri - unknown
    In this paper we present a new categorical approach which attempts to provide an original understanding of QM. Our logos categorical approach attempts to consider the main features of the quantum formalism as the standpoint to develop a conceptual representation that explains what the theory is really talking about —rather than as problems that need to be bypassed in order to allow a restoration of a classical “common sense” understanding of what there is. In particular, we discuss a solution to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Can Quantum-Mechanical Description of Physical Reality be Considered Complete?Niels Bohr - 1935 - Physical Review 48 (696--702):696--702.
    Download  
     
    Export citation  
     
    Bookmark   211 citations  
  • (1 other version)Relativity.Albert Einstein - 1920 - London,: Routledge. Edited by Robert W. Lawson.
    _Time_'s 'Man of the Century', Albert Einstein is the unquestioned founder of modern physics. His theory of relativity is the most important scientific idea of the modern era. In this short book Einstein explains, using the minimum of mathematical terms, the basic ideas and principles of the theory which has shaped the world we live in today. Unsurpassed by any subsequent books on relativity, this remains the most popular and useful exposition of Einstein's immense contribution to human knowledge.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • (2 other versions)Relativity: The Special and the General Theory.Albert Einstein - 2001 - Routledge.
    Time magazine's "Man of the Century", Albert Einstein is the founder of modern physics and his theory of relativity is the most important scientific idea of the modern era. In this short book, Einstein explains, using the minimum of mathematical terms, the basic ideas and principles of the theory that has shaped the world we live in today. Unsurpassed by any subsequent books on relativity, this remains the most popular and useful exposition of Einstein's immense contribution to human knowledge. With (...)
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • (1 other version)A Foundational Principle for Quantum Mechanics.Anton Zeilinger - 1999 - Foundations of Physics 29 (4):631-643.
    In contrast to the theories of relativity, quantum mechanics is not yet based on a generally accepted conceptual foundation. It is proposed here that the missing principle may be identified through the observation that all knowledge in physics has to be expressed in propositions and that therefore the most elementary system represents the truth value of one proposition, i.e., it carries just one bit of information. Therefore an elementary system can only give a definite result in one specific measurement. The (...)
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • Quantum Computation and Quantum Information.Michael A. Nielsen & Isaac L. Chuang - 2000 - Cambridge University Press.
    First-ever comprehensive introduction to the major new subject of quantum computing and quantum information.
    Download  
     
    Export citation  
     
    Bookmark   179 citations  
  • Information, immaterialism, instrumentalism: Old and new in quantum information.Christopher G. Timpson - 2010 - In Alisa Bokulich & Gregg Jaeger (eds.), Philosophy of quantum information and entanglement. New York: Cambridge University Press. pp. 208--227.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Quantum Theory of Probability and Decisions.David Deutsch - 1999 - Proceedings of the Royal Society of London:3129--37.
    Download  
     
    Export citation  
     
    Bookmark   143 citations  
  • A topos perspective on the kochen-Specker theorem: II. Conceptual aspects, and classical analogues.Jeremy Butterfield & Chris Isham - unknown
    In a previous paper, we have proposed assigning as the value of a physical quantity in quantum theory, a certain kind of set (a sieve) of quantities that are functions of the given quantity. The motivation was in part physical---such a valuation illuminates the Kochen-Specker theorem; and in part mathematical---the valuation arises naturally in the topos theory of presheaves. This paper discusses the conceptual aspects of this proposal. We also undertake two other tasks. First, we explain how the proposed valuations (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Relativity. The Special and General Theory.J. E. Trevor, Albert Einstein & Robert W. Lawson - 1921 - Philosophical Review 30 (2):213.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Weyl׳s search for a difference between ‘physical’ and ‘mathematical’ automorphisms.Erhard Scholz - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 61 (C):57-67.
    During his whole scientific life Hermann Weyl was fascinated by the interrelation of physical and mathematical theories. From the mid 1920s onward he reflected also on the typical difference between the two epistemic fields and tried to identify it by comparing their respective automorphism structures. In a talk given at the end of the 1940s he gave the most detailed and coherent discussion of his thoughts on this topic. This paper presents his arguments in the talk and puts it in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Unscrambling the Omelette of Quantum Contextuality : Preexistent Properties or Measurement Outcomes?Christian de Ronde - 2020 - Foundations of Science 25 (1):55-76.
    In this paper we attempt to analyze the physical and philosophical meaning of quantum contextuality. We will argue that there exists a general confusion within the foundational literature arising from the improper “scrambling” of two different meanings of quantum contextuality. While the first one, introduced by Bohr, is related to an epistemic interpretation of contextuality which stresses the incompatibility of measurement situations described in classical terms; the second meaning of contextuality is related to a purely formal understanding of contextuality as (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Kochen-Specker Theorem, Physical Invariance and Quantum Individuality.Christian de Ronde & Cesar Massri - unknown
    In this paper we attempt to discuss what has Kochen-Specker theorem to say about physical invariance and quantum individuality. In particular, we will discuss the impossibility of making reference to objective physical properties within the orthodox formalism of quantum mechanics. Through an analysis of the meaning of physical invariance and quantum contextuality we will derive a Corollary to KS theorem that proves that a vector in Hilbert space cannot be interpreted coherently as an object possessing physical properties. As a consequence, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A topos perspective on the kochen-Specker theorem: IV. Interval valuations.Jeremy Butterfield & Chris Isham - unknown
    We extend the topos-theoretic treatment given in previous papers of assigning values to quantities in quantum theory. In those papers, the main idea was to assign a sieve as a partial and contextual truth-value to a proposition that the value of a quantity lies in a certain set D of real numbers. Here we relate such sieve-valued valuations to valuations that assign to quantities subsets, rather than single elements, of their spectrum (we call these interval valuations). There are two main (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Dilemma for the Traditional Interpretation of Quantum Mixtures.Nancy Cartwright - 1972 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1972:251 - 258.
    Download  
     
    Export citation  
     
    Bookmark   4 citations