Switch to: References

Add citations

You must login to add citations.
  1. On classical finite probability theory as a quantum probability calculus.David Ellerman - manuscript
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or "toy" model of quantum mechanics over sets (QM/sets). There are two parts. The notion of an "event" is reinterpreted from being an epistemological state of indefiniteness to being an objective state of indefiniteness. And the mathematical framework of finite probability theory is recast as the quantum probability calculus for QM/sets. The point is not to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Partitions and Objective Indefiniteness.David Ellerman - manuscript
    Classical physics and quantum physics suggest two meta-physical types of reality: the classical notion of a objectively definite reality with properties "all the way down," and the quantum notion of an objectively indefinite type of reality. The problem of interpreting quantum mechanics (QM) is essentially the problem of making sense out of an objectively indefinite reality. These two types of reality can be respectively associated with the two mathematical concepts of subsets and quotient sets (or partitions) which are category-theoretically dual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Coming From Material Reality.Miguel Ferrero & J. L. Sánchez-Gómez - 2015 - Foundations of Science 20 (2):199-212.
    In a previous essay we demonstrated that quantum mechanical formalism is incompatible with some necessary principles of the mechanism conception still dominant in the physicist’s community. In this paper we show, based on recent empirical evidence in quantum physics, the inevitability of abandoning the old mechanism conception and to construct a new one in which physical reality is seen as a representation which refers to relations established through operations made by us in a world that we are determining. This change (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Can quantum probability provide a new direction for cognitive modeling?Emmanuel M. Pothos & Jerome R. Busemeyer - 2013 - Behavioral and Brain Sciences 36 (3):255-274.
    Classical (Bayesian) probability (CP) theory has led to an influential research tradition for modeling cognitive processes. Cognitive scientists have been trained to work with CP principles for so long that it is hard even to imagine alternative ways to formalize probabilities. However, in physics, quantum probability (QP) theory has been the dominant probabilistic approach for nearly 100 years. Could QP theory provide us with any advantages in cognitive modeling as well? Note first that both CP and QP theory share the (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Decision theory with prospect interference and entanglement.V. I. Yukalov & D. Sornette - 2011 - Theory and Decision 70 (3):283-328.
    We present a novel variant of decision making based on the mathematical theory of separable Hilbert spaces. This mathematical structure captures the effect of superposition of composite prospects, including many incorporated intentions, which allows us to describe a variety of interesting fallacies and anomalies that have been reported to particularize the decision making of real human beings. The theory characterizes entangled decision making, non-commutativity of subsequent decisions, and intention interference. We demonstrate how the violation of the Savage’s sure-thing principle, known (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Unambiguous Quantization from the Maximum Classical Correspondence that Is Self-consistent: The Slightly Stronger Canonical Commutation Rule Dirac Missed. [REVIEW]Steven Kenneth Kauffmann - 2011 - Foundations of Physics 41 (5):805-819.
    Dirac’s identification of the quantum analog of the Poisson bracket with the commutator is reviewed, as is the threat of self-inconsistent overdetermination of the quantization of classical dynamical variables which drove him to restrict the assumption of correspondence between quantum and classical Poisson brackets to embrace only the Cartesian components of the phase space vector. Dirac’s canonical commutation rule fails to determine the order of noncommuting factors within quantized classical dynamical variables, but does imply the quantum/classical correspondence of Poisson brackets (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Mathematical Characterization of Quantum Gaussian Stochastic Evolution Schemes.D. Salgado, J. L. Sánchez-Gómez & M. Ferrero - 2006 - Foundations of Physics 36 (4):526-540.
    We give a common mathematical characterization of relevant stochastic evolution schemes built up in the literatute to attack the quantum measurement problem. This characterization is based on two hypotheses, namely, (i) the trace conservation with probability one and (ii) the existence of a complex phase determining a linear support for the stochastic process driving the random evolution.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Generalized Representation of Particle Localization in Quantum Mechanics.G. F. Melloy - 2002 - Foundations of Physics 32 (4):503-530.
    It has been shown earlier that while strict localization of the free Dirac particle is not describable within the usual mathematical formalism, it is possible to describe sequences of positive-energy states whose spread Δ x =〈(x−x 0)2〉 about any given point x 0 approaches zero, where x is Dirac's position operator. The concept of a generalized function is extended here to allow for the succinct description of localized states in terms of “Asymptotic Localizing Functions.” Localization of both the nonrelativistic particle (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Photon wave-particle duality and virtual electromagnetic waves.C. Meis - 1997 - Foundations of Physics 27 (6):865-873.
    The question of the relation between the amplitude of the photon vector potential and its angular frequency is analyzed. The analogy between the relativistic quantum mechanical equations for a massles particle and those governing the photon vector potential appears clearly. Finally, the virtual electromagnetic waves associated with the photon and predicted by de Broglie, Bohr, and other appear naturally as a result of the photon vector potential quantification.
    Download  
     
    Export citation  
     
    Bookmark  
  • Pauli-Dirac matrix generators of Clifford Algebras.Charles P. Poole & Horacio A. Farach - 1982 - Foundations of Physics 12 (7):719-738.
    This article presents a Pauli-Dirac matrix approach to Clifford Algebras. It is shown that the algebra C2 is generated by two Pauli matrices iσ2 and iσ3; C3 is generated by the three Pauli matrices σ1, σ2, σ3; C4 is generated by four Dirac matrices γ0, γ1, γ2, γ3 and C5 is generated by five Dirac matrices iγ0, iγ1, iγ2, iγ3, iγ5. The higher dimensional anticommuting matrices which generate arbitrarily high order Clifford algebras are given in closed form. The results obtained (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Dirac delta function in two settings of Reverse Mathematics.Sam Sanders & Keita Yokoyama - 2012 - Archive for Mathematical Logic 51 (1-2):99-121.
    The program of Reverse Mathematics (Simpson 2009) has provided us with the insight that most theorems of ordinary mathematics are either equivalent to one of a select few logical principles, or provable in a weak base theory. In this paper, we study the properties of the Dirac delta function (Dirac 1927; Schwartz 1951) in two settings of Reverse Mathematics. In particular, we consider the Dirac Delta Theorem, which formalizes the well-known property \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Big toy models: Representing physical systems as Chu spaces.Samson Abramsky - 2012 - Synthese 186 (3):697 - 718.
    We pursue a model-oriented rather than axiomatic approach to the foundations of Quantum Mechanics, with the idea that new models can often suggest new axioms. This approach has often been fruitful in Logic and Theoretical Computer Science. Rather than seeking to construct a simplified toy model, we aim for a 'big toy model', in which both quantum and classical systems can be faithfully represented—as well as, possibly, more exotic kinds of systems. To this end, we show how Chu spaces can (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Pauli Exclusion Principle. Can It Be Proved?I. G. Kaplan - 2013 - Foundations of Physics 43 (10):1233-1251.
    The modern state of the Pauli exclusion principle studies is discussed. The Pauli exclusion principle can be considered from two viewpoints. On the one hand, it asserts that particles with half-integer spin (fermions) are described by antisymmetric wave functions, and particles with integer spin (bosons) are described by symmetric wave functions. This is a so-called spin-statistics connection. The reasons why the spin-statistics connection exists are still unknown, see discussion in text. On the other hand, according to the Pauli exclusion principle, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Paraconsistent Logic of Quantum Superpositions.Newton C. A. da Costa & Christian de Ronde - 2013 - Foundations of Physics 43 (7):845-858.
    Physical superpositions exist both in classical and in quantum physics. However, what is exactly meant by ‘superposition’ in each case is extremely different. In this paper we discuss some of the multiple interpretations which exist in the literature regarding superpositions in quantum mechanics. We argue that all these interpretations have something in common: they all attempt to avoid ‘contradiction’. We argue in this paper, in favor of the importance of developing a new interpretation of superpositions which takes into account contradiction, (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Coalgebras, Chu Spaces, and Representations of Physical Systems.Samson Abramsky - 2013 - Journal of Philosophical Logic 42 (3):551-574.
    We investigate the use of coalgebra to represent quantum systems, thus providing a basis for the use of coalgebraic methods in quantum information and computation. Coalgebras allow the dynamics of repeated measurement to be captured, and provide mathematical tools such as final coalgebras, bisimulation and coalgebraic logic. However, the standard coalgebraic framework does not accommodate contravariance, and is too rigid to allow physical symmetries to be represented. We introduce a fibrational structure on coalgebras in which contravariance is represented by indexing. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Austere quantum mechanics as a reductive basis for chemistry.Hinne Hettema - 2012 - Foundations of Chemistry 15 (3):311-326.
    This paper analyses Richard Bader’s ‘operational’ view of quantum mechanics and the role it plays in the the explanation of chemistry. I argue that QTAIM can partially be reconstructed as an ‘austere’ form of quantum mechanics, which is in turn committed to an eliminative concept of reduction that stems from Kemeny and Oppenheim. As a reductive theory in this sense, the theory fails. I conclude that QTAIM has both a regulatory and constructive function in the theories of chemistry.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Cauchy-Dirac Delta Function.Mikhail G. Katz & David Tall - 2013 - Foundations of Science 18 (1):107-123.
    The Dirac δ function has solid roots in nineteenth century work in Fourier analysis and singular integrals by Cauchy and others, anticipating Dirac’s discovery by over a century, and illuminating the nature of Cauchy’s infinitesimals and his infinitesimal definition of δ.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Further Review of the Incompatibility between Classical Principles and Quantum Postulates.M. Ferrero, V. Gómez Pin, D. Salgado & J. L. Sánchez-Gómez - 2013 - Foundations of Science 18 (1):125-138.
    The traditional “realist” conception of physics, according to which human concepts, laws and theories can grasp the essence of a reality in our absence , seems incompatible with quantum formalism and it most fruitful interpretation. The proof rests on the violation by quantum mechanical formalism of some fundamental principles of the classical ontology. We discuss if the conception behind Einstein’s idea of a reality in our absence, could be still maintained and at which price. We conclude that quantum mechanical formalism (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Relation between Classical and Quantum Electrodynamics.Mario Bacelar Valente - 2011 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 26 (1):51-68.
    Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as a more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Case for an Empirically Demonstrable Notion of the Vacuum in Quantum Electrodynamics Independent of Dynamical Fluctuations.Mario Bacelar Valente - 2011 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 42 (2):241-261.
    A re-evaluation of the notion of vacuum in quantum electrodynamics is presented, focusing on the vacuum of the quantized electromagnetic field. In contrast to the ‘nothingness’ associated to the idea of classical vacuum, subtle aspects are found in relation to the vacuum of the quantized electromagnetic field both at theoretical and experimental levels. These are not the usually called vacuum effects. The view defended here is that the so-called vacuum effects are not due to the ground state of the quantized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Physical causation and difference-making.Alyssa Ney - 2009 - British Journal for the Philosophy of Science 60 (4):737-764.
    This paper examines the relationship between physical theories of causation and theories of difference-making. It is plausible to think that such theories are compatible with one another as they are aimed at different targets: the former, an empirical account of actual causal relations; the latter, an account that will capture the truth of most of our ordinary causal claims. The question then becomes: what is the relationship between physical causation and difference-making? Is one kind of causal fact more fundamental than (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Orthomodular-valued models for quantum set theory.Masanao Ozawa - 2017 - Review of Symbolic Logic 10 (4):782-807.
    In 1981, Takeuti introduced quantum set theory by constructing a model of set theory based on quantum logic represented by the lattice of closed linear subspaces of a Hilbert space in a manner analogous to Boolean-valued models of set theory, and showed that appropriate counterparts of the axioms of Zermelo–Fraenkel set theory with the axiom of choice hold in the model. In this paper, we aim at unifying Takeuti’s model with Boolean-valued models by constructing models based on general complete orthomodular (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Bohr on EPR, the Quantum Postulate, Determinism, and Contextuality.Zachary Hall - 2024 - Foundations of Physics 54 (3):1-35.
    The famous EPR article of 1935 challenged the completeness of quantum mechanics and spurred decades of theoretical and experimental research into the foundations of quantum theory. A crowning achievement of this research is the demonstration that nature cannot in general consist in noncontextual pre-measurement properties that uniquely determine possible measurement outcomes, through experimental violations of Bell inequalities and Kochen-Specker theorems. In this article, I reconstruct an argument from Niels Bohr’s writings that the reality of the Einstein-Planck-de Broglie relations alone implies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gaston Bachelard ou la rêverie anagogique dans les enjeux du surrationnel.Mario Castellana - 2015 - Revue de Synthèse 136 (1-2):93-116.
    Les études récentes consacrées à la pensée épistémologique de Bachelard en France et en Italie mettent en évidence le caractère créatif et propulsif assigné aux mathématiques dans la construction du réel physique. Les travaux de Bachelard consacrés à la mécanique quantique dans les années '30, et en particulier à la physique théorique de Dirac, introduisent un concept particulier, celui de« rêverie anagogique » pour comprendre le caractère toujours plus abstrait et créateur de la mathématique dans la pensée des différents niveaux (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Quantum Information Theory & the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Quantum Information Theory and the Foundations of Quantum Mechanics is a conceptual analysis of one of the most prominent and exciting new areas of physics, providing the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. -/- Beginning from a careful, revisionary, analysis of the concepts of information in the everyday and classical information-theory settings, Christopher G. Timpson argues for an ontologically deflationary account of the nature of quantum information. (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • On Classical and Quantum Objectivity.Gabriel Catren - 2008 - Foundations of Physics 38 (5):470-487.
    We propose a conceptual framework for understanding the relationship between observables and operators in mechanics. To do so, we introduce a postulate that establishes a correspondence between the objective properties permitting to identify physical states and the symmetry transformations that modify their gauge dependant properties. We show that the uncertainty principle results from a faithful—or equivariant—realization of this correspondence. It is a consequence of the proposed postulate that the quantum notion of objective physical states is not incomplete, but rather that (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Theories, systemic models (SYMOs), laws and facts in the sciences.G. D. Wassermann - 1989 - Synthese 79 (3):489 - 514.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The problem of physical reality.W. H. Werkmeister - 1952 - Philosophy of Science 19 (3):214-224.
    In his recently published book, The Nature of Physical Reality, Professor Margenau develops a conception of physical reality, which, on the one hand, is a repudiation of radical empiricism and which, on the other hand, is a denial of realism. Margenau believes that he has accomplished his task by means of “constructs” which, in “a large area of discourse,” are “wholly synonymous” with concepts and which, nevertheless, when verified, are “the external objects”.
    Download  
     
    Export citation  
     
    Bookmark  
  • Are there rival, incommensurable theories?Dale W. Moberg - 1979 - Philosophy of Science 46 (2):244-262.
    Following an account of the incommensurability argument, an objection, based on assumptions concerning rival theories, is examined and rejected. This rejection leads to an alternative direction of criticism of incommensurability, a direction that involves the articulation of comparative standards of theory evaluation that are independent of meaning invariance.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Schwinger and the ontology of quantum field theory.Edward MacKinnon - 2007 - Foundations of Science 12 (4):295-323.
    An epistemological interpretation of quantum mechanics hinges on the claim that the distinctive features of quantum mechanics can be derived from some distinctive features of an observational basis. Old and new variations of this theme are listed. The program has a limited success in non-relativistic quantum mechanics. The crucial issue is how far it can be extended to quantum field theory without introducing significant ontological postulates. A C*-formulation covers algebraic quantum field theory, but not the standard model. Julian Schwinger’s anabatic (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Nonseparability and quantum chaos.Frederick M. Kronz - 1998 - Philosophy of Science 65 (1):50-75.
    Conventional wisdom has it that chaotic behavior is either strongly suppressed or absent in quantum models. Indeed, some researchers have concluded that these considerations serve to undermine the correspondence principle, thereby raising serious doubts about the adequacy of quantum mechanics. Thus, the quantum chaos question is a prime subject for philosophical analysis. The most significant reasons given for the absence or suppression of chaotic behavior in quantum models are the linearity of Schrödinger’s equation and the unitarity of the time-evolution described (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • About the confusion between the course of time and the arrow of time.Étienne Klein - 2007 - Foundations of Science 12 (3):203-221.
    A conclusion drawn after a conference devoted (in 1995) to the “arrow of time” was the following: “Indeed, it seems not a very great exaggeration to say that the main problem with “the problem of the direction of time” is to figure out exactly what the problem is supposed to be !” What does that mean? That more than 130 years after the work of Ludwig Boltzmann on the interpretation of irreversibility of physical phenomena, and that one century after Einstein’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the property structure of realist collapse interpretations of quantum mechanics and the so-called "counting anomaly".Roman Frigg - 2003 - International Studies in the Philosophy of Science 17 (1):43 – 57.
    The aim of this article is twofold. Recently, Lewis has presented an argument, now known as the "counting anomaly", that the spontaneous localization approach to quantum mechanics, suggested by Ghirardi, Rimini, and Weber, implies that arithmetic does not apply to ordinary macroscopic objects. I will take this argument as the starting point for a discussion of the property structure of realist collapse interpretations of quantum mechanics in general. At the end of this I present a proof of the fact that (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Dinge und Eigenschaften: Versuch zur Ontologie.Daniel von Wachter - 2000 - Verlag J.H. Röll.
    Discusses Armstrong's and Roman Ingarden's ontology, criticises substance ontology, and defends tropes and a field ontology.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantum Mechanics Based on an Extended Least Action Principle and Information Metrics of Vacuum Fluctuations.Jianhao M. Yang - 2024 - Foundations of Physics 54 (3):1-31.
    We show that the formulations of non-relativistic quantum mechanics can be derived from an extended least action principle. The principle can be considered as an extension of the least action principle from classical mechanics by factoring in two assumptions. First, the Planck constant defines the minimal amount of action a physical system needs to exhibit during its dynamics in order to be observable. Second, there is constant vacuum fluctuation along a classical trajectory. A novel method is introduced to define the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Unexpected quantum indeterminacy.Andrea Oldofredi - 2024 - European Journal for Philosophy of Science 14 (1):1-30.
    Recent philosophical discussions about metaphysical indeterminacy have been substantiated with the idea that quantum mechanics, one of the most successful physical theories in the history of science, provides explicit instances of worldly indefiniteness. Against this background, several philosophers underline that there are alternative formulations of quantum theory in which such indeterminacy has no room and plays no role. A typical example is Bohmian mechanics in virtue of its clear particle ontology. Contrary to these latter claims, this paper aims at showing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A New Logic, a New Information Measure, and a New Information-Based Approach to Interpreting Quantum Mechanics.David Ellerman - 2024 - Entropy Special Issue: Information-Theoretic Concepts in Physics 26 (2).
    The new logic of partitions is dual to the usual Boolean logic of subsets (usually presented only in the special case of the logic of propositions) in the sense that partitions and subsets are category-theoretic duals. The new information measure of logical entropy is the normalized quantitative version of partitions. The new approach to interpreting quantum mechanics (QM) is showing that the mathematics (not the physics) of QM is the linearized Hilbert space version of the mathematics of partitions. Or, putting (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Schrödinger Cats and Quantum Complementarity.Lorenzo Maccone - 2024 - Foundations of Physics 54 (1):1-10.
    Complementarity tells us we cannot know precisely the values of all the properties of a quantum object at the same time: the precise determination of one property implies that the value of some other (complementary) property is undefined. E.g. the precise knowledge of the position of a particle implies that its momentum is undefined. Here we show that a Schrödinger cat has a well defined value of a property that is complementary to its “being dead or alive” property. Then, thanks (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Evolution of Consciousness.Danko D. Georgiev - 2024 - Life 14 (1):48.
    The natural evolution of consciousness in different animal species mandates that conscious experiences are causally potent in order to confer any advantage in the struggle for survival. Any endeavor to construct a physical theory of consciousness based on emergence within the framework of classical physics, however, leads to causally impotent conscious experiences in direct contradiction to evolutionary theory since epiphenomenal consciousness cannot evolve through natural selection. Here, we review recent theoretical advances in describing sentience and free will as fundamental aspects (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relational Space-Time and de Broglie Waves.Tony Lyons - 2023 - Foundations of Physics 53 (4):1-26.
    Relative motion of particles is examined in the context of relational space-time. It is shown that de Broglie waves may be derived as a representation of the coordinate maps between the rest-frames of these particles. Energy and momentum are not absolute characteristics of these particles, they are understood as parameters of the coordinate maps between their rest-frames. It is also demonstrated the position of a particle is not an absolute, it is contingent on the frame of reference used to observe (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Neo-classical Relativistic Mechanics Theory for Electrons that Exhibits Spin, Zitterbewegung, Dipole Moments, Wavefunctions and Dirac’s Wave Equation.James L. Beck - 2023 - Foundations of Physics 53 (3):1-39.
    In this work, a neo-classical relativistic mechanics theory is presented where the spin of an electron is an inherent part of its world space-time path as a point particle. The fourth-order equation of motion corresponds to the same covariant Lagrangian function in proper time as in special relativity except for an additional spin energy term. The theory provides a hidden-variable model of the electron where the dynamic variables give a complete description of its motion, giving a classical mechanics explanation of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Physical Foundation of Quantum Theory.Mehran Shaghaghi - 2023 - Foundations of Physics 53 (1):1-36.
    The number of independent messages a physical system can carry is limited by the number of its adjustable properties. In particular, systems with only one adjustable property cannot carry more than a single message at a time. We demonstrate that this is true for the photons in the double-slit experiment, and that this is what leads to the fundamental limit on measuring the complementary aspect of the photons. Next, we illustrate that systems with a single adjustable property exhibit other quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Time’s Direction and Orthodox Quantum Mechanics: Time Symmetry and Measurement.Cristian Lopez - 2022 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 53 (4):421-440.
    It has been argued that measurement-induced collapses in Orthodox Quantum Mechanics generates an intrinsic (or built-in) quantum arrow of time. In this paper, I critically assess this proposal. I begin by distinguishing between an intrinsic and non-intrinsic arrow of time. After presenting the proposal of a collapse-based arrow of time in some detail, I argue, first, that any quantum arrow of time in Orthodox Quantum Mechanics is non-intrinsic since it depends on external information about the measurement context, and second, that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dirac’s Book The Principles of Quantum Mechanics as an Alternative Way of Organizing a Theory.Antonino Drago - 2023 - Foundations of Science 28 (2):551-574.
    Authoritative appraisals have qualified this book as an “axiomatic” theory. However, given that its essential content is no more than an analogy, its theoretical organization cannot be axiomatic. Indeed, in the first edition Dirac declares that he had avoided an axiomatic presentation. Moreover, I show that the text aims to solve a basic problem (How quantum mechanics is similar to classical mechanics?). A previous paper analyzed all past theories of physics, chemistry and mathematics, presented by the respective authors non-axiomatically. Four (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Purifying applied mathematics and applying pure mathematics: how a late Wittgensteinian perspective sheds light onto the dichotomy.José Antonio Pérez-Escobar & Deniz Sarikaya - 2021 - European Journal for Philosophy of Science 12 (1):1-22.
    In this work we argue that there is no strong demarcation between pure and applied mathematics. We show this first by stressing non-deductive components within pure mathematics, like axiomatization and theory-building in general. We also stress the “purer” components of applied mathematics, like the theory of the models that are concerned with practical purposes. We further show that some mathematical theories can be viewed through either a pure or applied lens. These different lenses are tied to different communities, which endorse (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Rethinking Logic: Logic in Relation to Mathematics, Evolution, and Method.Carlo Cellucci - 2013 - Dordrecht, Netherland: Springer.
    This volume examines the limitations of mathematical logic and proposes a new approach to logic intended to overcome them. To this end, the book compares mathematical logic with earlier views of logic, both in the ancient and in the modern age, including those of Plato, Aristotle, Bacon, Descartes, Leibniz, and Kant. From the comparison it is apparent that a basic limitation of mathematical logic is that it narrows down the scope of logic confining it to the study of deduction, without (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Bell's theorem: A bridge between the measurement and the mind/body problems.Badis Ydri - manuscript
    In this essay a quantum-dualistic, perspectival and synchronistic interpretation of quantum mechanics is further developed in which the classical world-from-decoherence which is perceived (decoherence) and the perceived world-in-consciousness which is classical (collapse) are not necessarily identified. Thus, Quantum Reality or "{\it unus mundus}" is seen as both i) a physical non-perspectival causal Reality where the quantum-to-classical transition is operated by decoherence, and as ii) a quantum linear superposition of all classical psycho-physical perspectival Realities which are governed by synchronicity as well (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum indeterminacy and the double-slit experiment.Claudio Calosi & Jessica Wilson - 2021 - Philosophical Studies 178 (10):3291-3317.
    In Calosi and Wilson (Phil Studies 2019/2018), we argue that on many interpretations of quantum mechanics (QM), there is quantum mechanical indeterminacy (QMI), and that a determinable-based account of metaphysical indeterminacy (MI), as per Wilson 2013 and 2016, properly accommodates the full range of cases of QMI. Here we argue that this approach is superior to other treatments of QMI on offer, both realistic and deflationary, in providing the basis for an intelligible explanation of the interference patterns in the double-slit (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Measurement and Quantum Dynamics in the Minimal Modal Interpretation of Quantum Theory.Jacob A. Barandes & David Kagan - 2020 - Foundations of Physics 50 (10):1189-1218.
    Any realist interpretation of quantum theory must grapple with the measurement problem and the status of state-vector collapse. In a no-collapse approach, measurement is typically modeled as a dynamical process involving decoherence. We describe how the minimal modal interpretation closes a gap in this dynamical description, leading to a complete and consistent resolution to the measurement problem and an effective form of state collapse. Our interpretation also provides insight into the indivisible nature of measurement—the fact that you can't stop a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Randomness and Underdetermination.Jeffrey A. Barrett & Simon M. Huttegger - 2020 - Philosophy of Science 87 (3):391-408.
    We consider the nature of quantum randomness and how one might have empirical evidence for it. We will see why, depending on one’s computational resources, it may be impossible to determine whether...
    Download  
     
    Export citation  
     
    Bookmark   3 citations