Switch to: Citations

Add references

You must login to add references.
  1. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?Albert Einstein, Boris Podolsky & Nathan Rosen - 1935 - Physical Review (47):777-780.
    Download  
     
    Export citation  
     
    Bookmark   768 citations  
  • Relational quantum mechanics.Carlo Rovelli - 1996 - International Journal of Theoretical Physics 35 (8):1637--1678.
    Download  
     
    Export citation  
     
    Bookmark   253 citations  
  • (1 other version)Discussion with Einstein on Epistemological Problems in Atomic Physics.Niels Bohr - 1949 - In Paul Arthur Schilpp (ed.), The Library of Living Philosophers, Volume 7. Albert Einstein: Philosopher-Scientist. Open Court. pp. 199--241.
    Download  
     
    Export citation  
     
    Bookmark   169 citations  
  • The modal interpretation of quantum mechanics and its generalization to density operators.Pieter E. Vermaas & Dennis Dieks - 1995 - Foundations of Physics 25 (1):145-158.
    We generalize the modal interpretation of quantum mechanics so that it may be applied to composite systems represented by arbitrary density operators. We discuss the interpretation these density operators receive and relate this to the discussion about the interpretation of proper and improper mixtures in the standard interpretation.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Quantum Gravity.Carlo Rovelli - 2004 - Cambridge University Press.
    Quantum gravity poses the problem of merging quantum mechanics and general relativity, the two great conceptual revolutions in the physics of the twentieth century. The loop and spinfoam approach, presented in this book, is one of the leading research programs in the field. The first part of the book discusses the reformulation of the basis of classical and quantum Hamiltonian physics required by general relativity. The second part covers the basic technical research directions. Appendices include a detailed history of the (...)
    Download  
     
    Export citation  
     
    Bookmark   174 citations  
  • Relational EPR.Matteo Smerlak & Carlo Rovelli - 2007 - Foundations of Physics 37 (3):427-445.
    We study the EPR-type correlations from the perspective of the relational interpretation of quantum mechanics. We argue that these correlations do not entail any form of “non-locality”, when viewed in the context of this interpretation. The abandonment of strict Einstein realism implied by the relational stance permits to reconcile quantum mechanics, completeness, (operationally defined) separability, and locality.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Probability in modal interpretations of quantum mechanics.Dennis Dieks - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):292-310.
    Modal interpretations have the ambition to construe quantum mechanics as an objective, man-independent description of physical reality. Their second leading idea is probabilism: quantum mechanics does not completely fix physical reality but yields probabilities. In working out these ideas an important motif is to stay close to the standard formalism of quantum mechanics and to refrain from introducing new structure by hand. In this paper we explain how this programme can be made concrete. In particular, we show that the Born (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • A Perspectival Version of the Modal Interpretation of Quantum Mechanics and the Origin of Macroscopic Behavior.Gyula Bene & Dennis Dieks - 2001 - Foundations of Physics 32 (5):645-671.
    We study the process of observation (measurement), within the framework of a “perspectival” (“relational,” “relative state”) version of the modal interpretation of quantum mechanics. We show that if we assume certain features of discreteness and determinism in the operation of the measuring device (which could be a part of the observer's nerve system), this gives rise to classical characteristics of the observed properties, in the first place to spatial localization. We investigate to what extent semi-classical behavior of the object system (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Modal Interpretations of Quantum Mechanics.Olimpia Lombardi & Dennis Dieks - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • The Modal Interpretation of Quantum Mechanics.Dennis Dieks & Pieter Vermaas - 1998 - Kluwer Academic Publishers.
    According to the modal interpretation, the standard mathematical framework of quantum mechanics specifies the physical magnitudes of a system, which have definite values. Probabilities are assigned to the possible values that these magnitudes may adopt. The interpretation is thus concerned with physical properties rather than with measurement results: it is a realistic interpretation. One of the notable achievements of this interpretation is that it dissolves the notorious measurement problem. The papers collected here, together with the introduction and concluding critical appraisal, (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Interpreting the Quantum World.Jeffrey Bub - 1998 - British Journal for the Philosophy of Science 49 (4):637-641.
    Download  
     
    Export citation  
     
    Bookmark   171 citations