Switch to: Citations

Add references

You must login to add references.
  1. The Degrees of Hyperimmune Sets.Webb Miller & D. A. Martin - 1968 - Mathematical Logic Quarterly 14 (7-12):159-166.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • On Computable Numbers, with an Application to the Entscheidungsproblem.Alan Turing - 1936 - Proceedings of the London Mathematical Society 42 (1):230-265.
    Download  
     
    Export citation  
     
    Bookmark   721 citations  
  • Jump equivalence of the Δ2 0 hyperimmune sets.S. B. Cooper - 1972 - Journal of Symbolic Logic 37 (3):598-600.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computational complexity, speedable and levelable sets.Robert I. Soare - 1977 - Journal of Symbolic Logic 42 (4):545-563.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Asymptotic density and the Ershov hierarchy.Rod Downey, Carl Jockusch, Timothy H. McNicholl & Paul Schupp - 2015 - Mathematical Logic Quarterly 61 (3):189-195.
    We classify the asymptotic densities of the sets according to their level in the Ershov hierarchy. In particular, it is shown that for, a real is the density of an n‐c.e. set if and only if it is a difference of left‐ reals. Further, we show that the densities of the ω‐c.e. sets coincide with the densities of the sets, and there are ω‐c.e. sets whose density is not the density of an n‐c.e. set for any.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)A theorem on hyperhypersimple sets.Donald A. Martin - 1963 - Journal of Symbolic Logic 28 (4):273-278.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • From Bi-Immunity to Absolute Undecidability.Laurent Bienvenu, Adam R. Day & Rupert Hölzl - 2009 - Journal of Symbolic Logic 78 (4):1218-1228.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Generic Complexity of Undecidable Problems.Alexei G. Myasnikov & Alexander N. Rybalov - 2008 - Journal of Symbolic Logic 73 (2):656 - 673.
    In this paper we study generic complexity of undecidable problems. It turns out that some classical undecidable problems are, in fact, strongly undecidable, i.e., they are undecidable on every strongly generic subset of inputs. For instance, the classical Halting Problem is strongly undecidable. Moreover, we prove and analog of the Rice theorem for strongly undecidable problems, which provides plenty of examples of strongly undecidable problems. Then we show that there are natural super-undecidable problems. i.e., problem which are undecidable on every (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The degrees of bi‐immune sets.Carl G. Jockusch - 1969 - Mathematical Logic Quarterly 15 (7‐12):135-140.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)The degrees of bi-immune sets.Carl G. Jockusch - 1969 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 15 (7-12):135-140.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Nonexistence of minimal pairs for generic computability.Gregory Igusa - 2013 - Journal of Symbolic Logic 78 (2):511-522.
    A generic computation of a subset $A$ of $\mathbb{N}$ consists of a computation that correctly computes most of the bits of $A$, and never incorrectly computes any bits of $A$, but which does not necessarily give an answer for every input. The motivation for this concept comes from group theory and complexity theory, but the purely recursion theoretic analysis proves to be interesting, and often counterintuitive. The primary result of this paper is that there are no minimal pairs for generic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • [Omnibus Review].Rod Downey - 1997 - Journal of Symbolic Logic 62 (3):1048-1055.
    Robert I. Soare, Automorphisms of the Lattice of Recursively Enumerable Sets. Part I: Maximal Sets.Manuel Lerman, Robert I. Soare, $d$-Simple Sets, Small Sets, and Degree Classes.Peter Cholak, Automorphisms of the Lattice of Recursively Enumerable Sets.Leo Harrington, Robert I. Soare, The $\Delta^0_3$-Automorphism Method and Noninvariant Classes of Degrees.
    Download  
     
    Export citation  
     
    Bookmark   24 citations