Switch to: References

Add citations

You must login to add citations.
  1. A Hyperimmune Minimal Degree and an ANR 2-Minimal Degree.Mingzhong Cai - 2010 - Notre Dame Journal of Formal Logic 51 (4):443-455.
    We develop a new method for constructing hyperimmune minimal degrees and construct an ANR degree which is a minimal cover of a minimal degree.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Π 1 0 Classes, Peano Arithmetic, Randomness, and Computable Domination.David E. Diamondstone, Damir D. Dzhafarov & Robert I. Soare - 2010 - Notre Dame Journal of Formal Logic 51 (1):127-159.
    We present an overview of the topics in the title and of some of the key results pertaining to them. These have historically been topics of interest in computability theory and continue to be a rich source of problems and ideas. In particular, we draw attention to the links and connections between these topics and explore their significance to modern research in the field.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Minimal degrees and the jump operator.S. B. Cooper - 1973 - Journal of Symbolic Logic 38 (2):249-271.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Countable thin Π01 classes.Douglas Cenzer, Rodney Downey, Carl Jockusch & Richard A. Shore - 1993 - Annals of Pure and Applied Logic 59 (2):79-139.
    Cenzer, D., R. Downey, C. Jockusch and R.A. Shore, Countable thin Π01 classes, Annals of Pure and Applied Logic 59 79–139. A Π01 class P {0, 1}ω is thin if every Π01 subclass of P is the intersection of P with some clopen set. Countable thin Π01 classes are constructed having arbitrary recursive Cantor- Bendixson rank. A thin Π01 class P is constructed with a unique nonisolated point A and furthermore A is of degree 0’. It is shown that no (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Calibrating randomness.Rod Downey, Denis R. Hirschfeldt, André Nies & Sebastiaan A. Terwijn - 2006 - Bulletin of Symbolic Logic 12 (3):411-491.
    We report on some recent work centered on attempts to understand when one set is more random than another. We look at various methods of calibration by initial segment complexity, such as those introduced by Solovay [125], Downey, Hirschfeldt, and Nies [39], Downey, Hirschfeldt, and LaForte [36], and Downey [31]; as well as other methods such as lowness notions of Kučera and Terwijn [71], Terwijn and Zambella [133], Nies [101, 100], and Downey, Griffiths, and Reid [34]; higher level randomness notions (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Extremal numberings and fixed point theorems.Marat Faizrahmanov - 2022 - Mathematical Logic Quarterly 68 (4):398-408.
    We consider so‐called extremal numberings that form the greatest or minimal degrees under the reducibility of all A‐computable numberings of a given family of subsets of, where A is an arbitrary oracle. Such numberings are very common in the literature and they are called universal and minimal A‐computable numberings, respectively. The main question of this paper is when a universal or a minimal A‐computable numbering satisfies the Recursion Theorem (with parameters). First we prove that the Turing degree of a set (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Strong Jump-Traceability.Noam Greenberg & Dan Turetsky - 2018 - Bulletin of Symbolic Logic 24 (2):147-164.
    We review the current knowledge concerning strong jump-traceability. We cover the known results relating strong jump-traceability to randomness, and those relating it to degree theory. We also discuss the techniques used in working with strongly jump-traceable sets. We end with a section of open questions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Asymptotic density and computably enumerable sets.Rodney G. Downey, Carl G. Jockusch & Paul E. Schupp - 2013 - Journal of Mathematical Logic 13 (2):1350005.
    We study connections between classical asymptotic density, computability and computable enumerability. In an earlier paper, the second two authors proved that there is a computably enumerable set A of density 1 with no computable subset of density 1. In the current paper, we extend this result in three different ways: The degrees of such sets A are precisely the nonlow c.e. degrees. There is a c.e. set A of density 1 with no computable subset of nonzero density. There is a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Lowness for genericity.Liang Yu - 2006 - Archive for Mathematical Logic 45 (2):233-238.
    We study lowness for genericity. We show that there exists no Turing degree which is low for 1-genericity and all of computably traceable degrees are low for weak 1-genericity.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Schnorr trivial sets and truth-table reducibility.Johanna N. Y. Franklin & Frank Stephan - 2010 - Journal of Symbolic Logic 75 (2):501-521.
    We give several characterizations of Schnorr trivial sets, including a new lowness notion for Schnorr triviality based on truth-table reducibility. These characterizations allow us to see not only that some natural classes of sets, including maximal sets, are composed entirely of Schnorr trivials, but also that the Schnorr trivial sets form an ideal in the truth-table degrees but not the weak truth-table degrees. This answers a question of Downey, Griffiths and LaForte.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Degrees joining to 0'. [REVIEW]David B. Posner & Robert W. Robinson - 1981 - Journal of Symbolic Logic 46 (4):714 - 722.
    It is shown that if A and C are sets of degrees uniformly recursive in 0' with $\mathbf{0} \nonin \mathscr{C}$ then there is a degree b with b' = 0', b ∪ c = 0' for every c ∈ C, and $\mathbf{a} \nleq \mathbf{b}$ for every a ∈ A ∼ {0}. The proof is given as an oracle construction recursive in 0'. It follows that any nonrecursive degree below 0' can be joined to 0' by a degree strictly below 0'. (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • On the structures inside truth-table degrees.Frank Stephan - 2001 - Journal of Symbolic Logic 66 (2):731-770.
    The following theorems on the structure inside nonrecursive truth-table degrees are established: Dëgtev's result that the number of bounded truth-table degrees inside a truth-table degree is at least two is improved by showing that this number is infinite. There are even infinite chains and antichains of bounded truth-table degrees inside every truth-table degree. The latter implies an affirmative answer to the following question of Jockusch: does every truth-table degree contain an infinite antichain of many-one degrees? Some but not all truth-table (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Notions of weak genericity.Stuart A. Kurtz - 1983 - Journal of Symbolic Logic 48 (3):764-770.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Ramsey's theorem for computably enumerable colorings.Tamara Hummel & Carl Jockusch - 2001 - Journal of Symbolic Logic 66 (2):873-880.
    It is shown that for each computably enumerable set P of n-element subsets of ω there is an infinite Π 0 n set $A \subseteq \omega$ such that either all n-element subsets of A are in P or no n-element subsets of A are in P. An analogous result is obtained with the requirement that A be Π 0 n replaced by the requirement that the jump of A be computable from 0 (n) . These results are best possible in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Covering the recursive sets.Bjørn Kjos-Hanssen, Frank Stephan & Sebastiaan A. Terwijn - 2017 - Annals of Pure and Applied Logic 168 (4):804-823.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the ranked points of a Π1 0 set.Douglas Cenzer & Rick L. Smith - 1989 - Journal of Symbolic Logic 54 (3):975-991.
    This paper continues joint work of the authors with P. Clote, R. Soare and S. Wainer (Annals of Pure and Applied Logic, vol. 31 (1986), pp. 145--163). An element x of the Cantor space 2 ω is said have rank α in the closed set P if x is in $D^\alpha(P)\backslash D^{\alpha + 1}(P)$ , where D α is the iterated Cantor-Bendixson derivative. The rank of x is defined to be the least α such that x has rank α in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Degrees That Are Not Degrees of Categoricity.Bernard Anderson & Barbara Csima - 2016 - Notre Dame Journal of Formal Logic 57 (3):389-398.
    A computable structure $\mathcal {A}$ is $\mathbf {x}$-computably categorical for some Turing degree $\mathbf {x}$ if for every computable structure $\mathcal {B}\cong\mathcal {A}$ there is an isomorphism $f:\mathcal {B}\to\mathcal {A}$ with $f\leq_{T}\mathbf {x}$. A degree $\mathbf {x}$ is a degree of categoricity if there is a computable structure $\mathcal {A}$ such that $\mathcal {A}$ is $\mathbf {x}$-computably categorical, and for all $\mathbf {y}$, if $\mathcal {A}$ is $\mathbf {y}$-computably categorical, then $\mathbf {x}\leq_{T}\mathbf {y}$. We construct a $\Sigma^{0}_{2}$ set whose degree (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The degrees of bi-hyperhyperimmune sets.Uri Andrews, Peter Gerdes & Joseph S. Miller - 2014 - Annals of Pure and Applied Logic 165 (3):803-811.
    We study the degrees of bi-hyperhyperimmune sets. Our main result characterizes these degrees as those that compute a function that is not dominated by any ∆02 function, and equivalently, those that compute a weak 2-generic. These characterizations imply that the collection of bi-hhi Turing degrees is closed upwards.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computational randomness and lowness.Sebastiaan Terwijn & Domenico Zambella - 2001 - Journal of Symbolic Logic 66 (3):1199-1205.
    We prove that there are uncountably many sets that are low for the class of Schnorr random reals. We give a purely recursion theoretic characterization of these sets and show that they all have Turing degree incomparable to 0'. This contrasts with a result of Kučera and Terwijn [5] on sets that are low for the class of Martin-Löf random reals.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The upper semilattice of degrees ≤ 0' is complemented.David B. Posner - 1981 - Journal of Symbolic Logic 46 (4):705 - 713.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Natural factors of the Muchnik lattice capturing IPC.Rutger Kuyper - 2013 - Annals of Pure and Applied Logic 164 (10):1025-1036.
    We give natural examples of factors of the Muchnik lattice which capture intuitionistic propositional logic , arising from the concepts of lowness, 1-genericity, hyperimmune-freeness and computable traceability. This provides a purely computational semantics for IPC.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Schnorr trivial reals: a construction. [REVIEW]Johanna N. Y. Franklin - 2008 - Archive for Mathematical Logic 46 (7-8):665-678.
    A real is Martin-Löf (Schnorr) random if it does not belong to any effectively presented null ${\Sigma^0_1}$ (recursive) class of reals. Although these randomness notions are very closely related, the set of Turing degrees containing reals that are K-trivial has very different properties from the set of Turing degrees that are Schnorr trivial. Nies proved in (Adv Math 197(1):274–305, 2005) that all K-trivial reals are low. In this paper, we prove that if ${{\bf h'} \geq_T {\bf 0''}}$ , then h (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The degrees of hyperhyperimmune sets.Carl G. Jockusch - 1969 - Journal of Symbolic Logic 34 (3):489-493.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The complexity of ODDnA.Richard Beigel, William Gasarch, Martin Kummer, Georgia Martin, Timothy McNicholl & Frank Stephan - 2000 - Journal of Symbolic Logic 65 (1):1-18.
    For a fixed set A, the number of queries to A needed in order to decide a set S is a measure of S's complexity. We consider the complexity of certain sets defined in terms of A: $ODD^A_n = \{(x_1, \dots ,x_n): {\tt\#}^A_n(x_1, \dots, x_n) \text{is odd}\}$ and, for m ≥ 2, $\text{MOD}m^A_n = \{(x_1, \dots ,x_n):{\tt\#}^A_n(x_1, \dots ,x_n) \not\equiv 0 (\text{mod} m)\},$ where ${\tt\#}^A_n(x_1, \dots ,x_n) = A(x_1)+\cdots+A(x_n)$ . (We identify A(x) with χ A (x), where χ A is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Weakly semirecursive sets and r.e. orderings.Martin Kummer & Frank Stephan - 1993 - Annals of Pure and Applied Logic 60 (2):133-150.
    Weakly semirecursive sets have been introduced by Jockusch and Owings . In the present paper their investigation is pushed forward by utilizing r.e. partial orderings, which turn out to be instrumental for the study of degrees of subclasses of weakly semirecursive sets.
    Download  
     
    Export citation  
     
    Bookmark  
  • Local initial segments of the Turing degrees.Bjørn Kjos-Hanssen - 2003 - Bulletin of Symbolic Logic 9 (1):26-36.
    Recent results on initial segments of the Turing degrees are presented, and some conjectures about initial segments that have implications for the existence of nontrivial automorphisms of the Turing degrees are indicated.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Low level nondefinability results: Domination and recursive enumeration.Mingzhong Cai & Richard A. Shore - 2013 - Journal of Symbolic Logic 78 (3):1005-1024.
    Download  
     
    Export citation  
     
    Bookmark  
  • Characterizing Lowness for Demuth Randomness.Laurent Bienvenu, Rod Downey, Noam Greenberg, André Nies & Dan Turetsky - 2014 - Journal of Symbolic Logic 79 (2):526-560.
    We show the existence of noncomputable oracles which are low for Demuth randomness, answering a question in [15] (also Problem 5.5.19 in [34]). We fully characterize lowness for Demuth randomness using an appropriate notion of traceability. Central to this characterization is a partial relativization of Demuth randomness, which may be more natural than the fully relativized version. We also show that an oracle is low for weak Demuth randomness if and only if it is computable.
    Download  
     
    Export citation  
     
    Bookmark   2 citations