Switch to: Citations

Add references

You must login to add references.
  1. Einstein׳s Equations for Spin 2 Mass 0 from Noether׳s Converse Hilbertian Assertion.J. Brian Pitts - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 56:60-69.
    An overlap between the general relativist and particle physicist views of Einstein gravity is uncovered. Noether's 1918 paper developed Hilbert's and Klein's reflections on the conservation laws. Energy-momentum is just a term proportional to the field equations and a "curl" term with identically zero divergence. Noether proved a \emph{converse} "Hilbertian assertion": such "improper" conservation laws imply a generally covariant action. Later and independently, particle physicists derived the nonlinear Einstein equations assuming the absence of negative-energy degrees of freedom for stability, along (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Invariance and Objectivity.Gerhard Vollmer - 2010 - Foundations of Physics 40 (9-10):1651-1667.
    Scientific knowledge should not only be true, it should be as objective as possible. It should refer to a reality independent of any subject. What can we use as a criterion of objectivity? Intersubjectivity (i.e., intersubjective understandability and intersubjective testability) is necessary, but not sufficient. Other criteria are: independence of reference system, independence of method, non-conventionality. Is there some common trait? Yes, there is: invariance under some specified transformations. Thus, we say: A proposition is objective only if its truth is (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gravitational and Nongravitational Energy: The Need for Background Structures.Vincent Lam - 2011 - Philosophy of Science 78 (5):1012-1024.
    The aim of this paper is to discuss some aspects of the nature gravitational energy within the general theory of relativity. Some aspects of the difficulties to ascribe the usual features of localization and conservation to gravitational energy are reviewed and considered in the light of the dual of role of the dynamical gravitational field, which encodes both inertio-gravitational effects and the chronogeometrical structures of spacetime. These considerations will lead us to discuss the fact that the very notion of energy (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Topics in the Foundations of General Relativity and Newtonian Gravitation Theory.David B. Malament - 2012 - Chicago: Chicago University Press.
    1.1 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Tangent Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (...)
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • Gravitation and cosmology: principles and applications of the general theory of relativity.Steven Weinberg - 1972 - New York,: Wiley.
    Weinberg's 1972 work, in his description, had two purposes. The first was practical to bring together and assess the wealth of data provided over the previous decade while realizing that newer data would come in even as the book was being printed. He hoped the comprehensive picture would prepare the reader and himself to that new data as it emerged. The second was to produce a textbook about general relativity in which geometric ideas were not given a starring role for (...)
    Download  
     
    Export citation  
     
    Bookmark   152 citations  
  • Energy Conservation in GTR.Carl Hoefer - 2000 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 31 (2):187-199.
    The topics of gravitational field energy and energy-momentum conservation in General Relativity theory have been unjustly neglected by philosophers. If the gravitational field in space free of ordinary matter, as represented by the metric g ab itself, can be said to carry genuine energy and momentum, this is a powerful argument for adopting the substantivalist view of spacetime.This paper explores the standard textbook account of gravitational field energy and argues that (a) so-called stress-energy of the gravitational field is well-defined neither (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Causal Process Theories.Phil Dowe - 2009 - In Helen Beebee, Christopher Hitchcock & Peter Menzies (eds.), The Oxford Handbook of Causation. Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The meaning of general covariance.John Stachel - 1993 - In John Earman (ed.), Philosophical Problems of the Internal and External World. University of Pittsburgh Press. pp. 129--60.
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Einstein׳s physical strategy, energy conservation, symmetries, and stability: “But Grossmann & I believed that the conservation laws were not satisfied”.J. Brian Pitts - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 54 (C):52-72.
    Recent work on the history of General Relativity by Renn, Sauer, Janssen et al. shows that Einstein found his field equations partly by a physical strategy including the Newtonian limit, the electromagnetic analogy, and energy conservation. Such themes are similar to those later used by particle physicists. How do Einstein's physical strategy and the particle physics derivations compare? What energy-momentum complex did he use and why? Did Einstein tie conservation to symmetries, and if so, to which? How did his work (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Nonlinear Essence of Gravitational Waves.R. Aldrovandi, J. G. Pereira & K. H. Vu - 2007 - Foundations of Physics 37 (10):1503-1517.
    A critical review of gravitational wave theory is made. It is pointed out that the usual linear approach to the gravitational wave theory is neither conceptually consistent nor mathematically justified. Relying upon that analysis it is argued that—analogously to a Yang-Mills propagating field, which must be nonlinear to carry its gauge charge—a gravitational wave must necessarily be nonlinear to transport its own charge—that is, energy-momentum.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gravitational Waves and Spacetime.Mario Bunge - 2018 - Foundations of Science 23 (2):399-403.
    The recent detection of gravitational waves by the LIGO team has rightly been hailed as “the crowning achievemen of classical physics”. This detection, which came at the end of a decade-long quest, involved 950 investigators, and cost around one billion US dollars, was the scientific star of the year 2015. What, if any, is the philosophical impact of this scientific breakthrough, which Albert Einstein had anticipated one century earlier? To answer this question we start by examining the central equations of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves.Daniel Kennefick - 2007 - Princeton University Press.
    "This book is a very impressive achievement. Kennefick skillfully introduces readers to some of the most abstruse yet fascinating concepts in modern physics stemming from Einstein's gravitational theory.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Space-time structure.Erwin Schrödinger - 1950 - Cambridge [Eng.]: University Press.
    INTRODUCTION In Einstein's theory of gravitation matter and its dynamical interaction are based on the notion of an intrinsic geometric structure of the space -time continuum. The ideal aspiration, the ultimate aim, of the theory is not more and ...
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The Constraints General Relativity Places on Physicalist Accounts of Causality.Erik Curiel - 2000 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 15 (1):33-58.
    All accounts of causality that presuppose the propagation or transfer or some physical stuff to be an essential part of the causal relation rely for the force of their causal claims on a principle of conservation for that stuff. General Relativity does not permit the rigorous formulation of appropriate conservation principles. Consequently, in so far as General Relativity is considered and fundamental physical theory, such accounts of causality cannot be considered fundamental. The continued use of such accounts of causality ought (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Is Gravitation Interaction or just Curved-Spacetime Geometry?Vesselin Petkov - unknown
    As there have still been attempts to regard gravity, a 100 years after Einstein's general relativity, not as a manifestation of the non-Euclidean geometry of spacetime, but as a physical field, it is high time to face the ultimate judge -- the experimental evidence -- to settle this issue once and for all. Two rulings of the ultimate judge are reminded -- the experimental fact that falling particles do not resist their fall rules out the option that gravity may be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Philosophische Probleme der modernen Physik.Peter Mittelstaedt - 1963 - Mannheim,: Bibliographisches Institut.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Philosophische Probleme der modernen Physik.Peter Mittelstaedt - 1966 - Zeitschrift für Philosophische Forschung 20 (1):181-184.
    Download  
     
    Export citation  
     
    Bookmark   17 citations