Switch to: References

Add citations

You must login to add citations.
  1. Substantivalist and Relationalist Approaches to Spacetime.Oliver Pooley - 2013 - In Robert Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford University Press USA.
    Substantivalists believe that spacetime and its parts are fundamental constituents of reality. Relationalists deny this, claiming that spacetime enjoys only a derivative existence. I begin by describing how the Galilean symmetries of Newtonian physics tell against both Newton's brand of substantivalism and the most obvious relationalist alternative. I then review the obvious substantivalist response to the problem, which is to ditch substantival space for substantival spacetime. The resulting position has many affinities with what are arguably the most natural interpretations of (...)
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • Are Newtonian Gravitation and Geometrized Newtonian Gravitation Theoretically Equivalent?James Owen Weatherall - 2016 - Erkenntnis 81 (5):1073-1091.
    I argue that a criterion of theoretical equivalence due to Glymour :227–251, 1977) does not capture an important sense in which two theories may be equivalent. I then motivate and state an alternative criterion that does capture the sense of equivalence I have in mind. The principal claim of the paper is that relative to this second criterion, the answer to the question posed in the title is “yes”, at least on one natural understanding of Newtonian gravitation.
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Regarding the ‘Hole Argument’.James Owen Weatherall - 2018 - British Journal for the Philosophy of Science 69 (2):329-350.
    I argue that the hole argument is based on a misleading use of the mathematical formalism of general relativity. If one is attentive to mathematical practice, I will argue, the hole argument is blocked. _1._ Introduction _2._ A Warmup Exercise _3._ The Hole Argument _4._ An Argument from Classical Spacetime Theory _5._ The Hole Argument Revisited.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Fundamental and Emergent Geometry in Newtonian Physics.David Wallace - 2020 - British Journal for the Philosophy of Science 71 (1):1-32.
    Using as a starting point recent and apparently incompatible conclusions by Saunders and Knox, I revisit the question of the correct spacetime setting for Newtonian physics. I argue that understood correctly, these two versions of Newtonian physics make the same claims both about the background geometry required to define the theory, and about the inertial structure of the theory. In doing so I illustrate and explore in detail the view—espoused by Knox, and also by Brown —that inertial structure is defined (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The Dynamical Approach to Spacetime Theories.Harvey R. Brown & James Read - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    We review the dynamical approach to spacetime theories---in particular, its origins in the development of special relativity, its opposition to the contemporary `geometrical' approach, and the manner in which it plays out in general relativity. In addition, we demonstrate that the approach is compatible with the `angle bracket school'.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Newtonian Spacetime Structure in Light of the Equivalence Principle.Eleanor Knox - 2014 - British Journal for the Philosophy of Science 65 (4):863-880.
    I argue that the best spacetime setting for Newtonian gravitation (NG) is the curved spacetime setting associated with geometrized Newtonian gravitation (GNG). Appreciation of the ‘Newtonian equivalence principle’ leads us to conclude that the gravitational field in NG itself is a gauge quantity, and that the freely falling frames are naturally identified with inertial frames. In this context, the spacetime structure of NG is represented not by the flat neo-Newtonian connection usually made explicit in formulations, but by the sum of (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Regarding the ‘Hole Argument’.James Owen Weatherall - 2016 - British Journal for the Philosophy of Science:axw012.
    I argue that the Hole Argument is based on a misleading use of the mathematical formalism of general relativity. If one is attentive to mathematical practice, I will argue, the Hole Argument is blocked.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Motivating dualities.James Read & Thomas Møller-Nielsen - 2020 - Synthese 197 (1):263-291.
    There exists a common view that for theories related by a ‘duality’, dual models typically may be taken ab initio to represent the same physical state of affairs, i.e. to correspond to the same possible world. We question this view, by drawing a parallel with the distinction between ‘interpretational’ and ‘motivational’ approaches to symmetries.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Understanding Gauge.James Owen Weatherall - 2015 - Philosophy of Science 83 (5):1039-1049.
    I consider two usages of the expression "gauge theory". On one, a gauge theory is a theory with excess structure; on the other, a gauge theory is any theory appropriately related to classical electromagnetism. I make precise one sense in which one formulation of electromagnetism, the paradigmatic gauge theory on both usages, may be understood to have excess structure, and then argue that gauge theories on the second usage, including Yang-Mills theory and general relativity, do not generally have excess structure (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Sophistry about symmetries?Niels C. M. Martens & James Read - 2020 - Synthese 199 (1-2):315-344.
    A common adage runs that, given a theory manifesting symmetries, the syntax of that theory should be modified in order to construct a new theory, from which symmetry-variant structure of the original theory has been excised. Call this strategy for explicating the underlying ontology of symmetry-related models reduction. Recently, Dewar has proposed an alternative to reduction as a means of articulating the ontology of symmetry-related models—what he calls sophistication, in which the semantics of the original theory is modified, and symmetry-related (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • On Einstein Algebras and Relativistic Spacetimes.Sarita Rosenstock, Thomas William Barrett & James Owen Weatherall - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):309-316.
    In this paper, we examine the relationship between general relativity and the theory of Einstein algebras. We show that according to a formal criterion for theoretical equivalence recently proposed by Halvorson and Weatherall, the two are equivalent theories.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Replacing recipe realism.Juha Saatsi - 2017 - Synthese 194 (9):3233-3244.
    Many realist writings exemplify the spirit of ‘recipe realism’. Here I characterise recipe realism, challenge it, and propose replacing it with ‘exemplar realism’. This alternative understanding of realism is more piecemeal, robust, and better in tune with scientists’ own attitude towards their best theories, and thus to be preferred.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • On Dualities and Equivalences Between Physical Theories.Jeremy Butterfield - 2021 - In Christian Wüthrich, Baptiste Le Bihan & Nick Huggett (eds.), Philosophy Beyond Spacetime: Implications From Quantum Gravity. Oxford: Oxford University Press.
    The main aim of this paper is to make a remark about the relation between dualities between theories, as `duality' is understood in physics and equivalence of theories, as `equivalence' is understood in logic and philosophy. The remark is that in physics, two theories can be dual, and accordingly get called `the same theory', though we interpret them as disagreeing---so that they are certainly not equivalent, as `equivalent' is normally understood. So the remark is simple: but, I shall argue, worth (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Categories and the Foundations of Classical Field Theories.James Owen Weatherall - 2017 - In Elaine M. Landry (ed.), Categories for the Working Philosopher. Oxford, England: Oxford University Press.
    I review some recent work on applications of category theory to questions concerning theoretical structure and theoretical equivalence of classical field theories, including Newtonian gravitation, general relativity, and Yang-Mills theories.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Similarity, Topology, and Physical Significance in Relativity Theory.Samuel C. Fletcher - 2016 - British Journal for the Philosophy of Science 67 (2):365-389.
    Stephen Hawking, among others, has proposed that the topological stability of a property of space-time is a necessary condition for it to be physically significant. What counts as stable, however, depends crucially on the choice of topology. Some physicists have thus suggested that one should find a canonical topology, a single ‘right’ topology for every inquiry. While certain such choices might be initially motivated, some little-discussed examples of Robert Geroch and some propositions of my own show that the main candidates—and (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Functional Gravitational Energy.James Read - 2018 - British Journal for the Philosophy of Science 71 (1):205-232.
    Does the gravitational field described in general relativity possess genuine stress-energy? We answer this question in the affirmative, in a weak sense applicable in a certain class of frames of a certain class of models of the theory, and arguably also in a strong sense, applicable in all frames of all models of the theory. In addition, we argue that one can be a realist about gravitational stress-energy in general relativity even if one is a relationist about spacetime ontology. In (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Theoretical Equivalence as Interpretative Equivalence.Kevin Coffey - 2014 - British Journal for the Philosophy of Science 65 (4):821-844.
    The problem of theoretical equivalence is traditionally understood as the problem of specifying when superficially dissimilar accounts of the world are reformulations of a single underlying theory. One important strategy for answering this question has been to appeal to formal relations between theoretical structures. This article presents two reasons to think that such an approach will be unsuccessful and suggests an alternative account of theoretical equivalence, based on the notion of interpretive equivalence, in which the problem is merely an instance (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Global Spacetime Structure.John Byron Manchak - 2013 - Cambridge University Press.
    This exploration of the global structure of spacetime within the context of general relativity examines the causal and singular structures of spacetime, revealing some of the curious possibilities that are compatible with the theory, such as `time travel' and `holes' of various types. Investigations into the epistemic and modal structures of spacetime highlight the difficulties in ruling out such possibilities, unlikely as they may seem at first. The upshot seems to be that what counts as a `physically reasonable' spacetime structure (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Time Reversal.Bryan W. Roberts - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    This article deals with the question of what time reversal means. It begins with a presentation of the standard account of time reversal, with plenty of examples, followed by a popular non-standard account. I argue that, in spite of recent commentary to the contrary, the standard approach to the meaning of time reversal is the only one that is philosophically and physically viable. The article concludes with a few open research problems about time reversal.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)What is theoretical progress of science?Juha Saatsi - 2019 - Synthese 196 (2):611-631.
    The epistemic conception of scientific progress equates progress with accumulation of scientific knowledge. I argue that the epistemic conception fails to fully capture scientific progress: theoretical progress, in particular, can transcend scientific knowledge in important ways. Sometimes theoretical progress can be a matter of new theories ‘latching better onto unobservable reality’ in a way that need not be a matter of new knowledge. Recognising this further dimension of theoretical progress is particularly significant for understanding scientific realism, since realism is naturally (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Fiber bundles, Yang–Mills theory, and general relativity.James Owen Weatherall - 2016 - Synthese 193 (8).
    I articulate and discuss a geometrical interpretation of Yang–Mills theory. Analogies and disanalogies between Yang–Mills theory and general relativity are also considered.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • On Representational Redundancy, Surplus Structure, and the Hole Argument.Clara Bradley & James Owen Weatherall - 2020 - Foundations of Physics 50 (4):270-293.
    We address a recent proposal concerning ‘surplus structure’ due to Nguyen et al.. We argue that the sense of ‘surplus structure’ captured by their formal criterion is importantly different from—and in a sense, opposite to—another sense of ‘surplus structure’ used by philosophers. We argue that minimizing structure in one sense is generally incompatible with minimizing structure in the other sense. We then show how these distinctions bear on Nguyen et al.’s arguments about Yang-Mills theory and on the hole argument.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)The limitations of inertial frame spacetime functionalism.James Read & Tushar Menon - 2021 - Synthese 199 (2):229-251.
    For Knox, ‘spacetime’ is to be defined functionally, as that which picks out a structure of local inertial frames. Assuming that Knox is motivated to construct this functional definition of spacetime on the grounds that it appears to identify that structure which plays theoperationalrole of spacetime—i.e., that structure which is actually surveyed by physical rods and clocks built from matter fields—we identify in this paper important limitations of her approach: these limitations are based upon the fact that there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Maxwell-Huygens, Newton-Cartan, and Saunders-Knox Space-Times.James Owen Weatherall - 2016 - Philosophy of Science 83 (1):82-92.
    I address a question recently raised by Simon Saunders concerning the relationship between the space-time structure of Newton-Cartan theory and that of what I will call “Maxwell-Huygens space-time.” This discussion will also clarify a connection between Saunders’s work and a recent paper by Eleanor Knox.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • (1 other version)What is theoretical progress of science?Juha Saatsi - 2016 - Synthese:1-21.
    The epistemic conception of scientific progress equates progress with accumulation of scientific knowledge. I argue that the epistemic conception fails to fully capture scientific progress: theoretical progress, in particular, can transcend scientific knowledge in important ways. Sometimes theoretical progress can be a matter of new theories ‘latching better onto unobservable reality’ in a way that need not be a matter of new knowledge. Recognising this further dimension of theoretical progress is particularly significant for understanding scientific realism, since realism is naturally (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Invariance, intrinsicality and perspicuity.Caspar Jacobs - 2022 - Synthese 200 (2):1-17.
    It is now standard to interpret symmetry-related models of physical theories as representing the same state of affairs. Recently, a debate has sprung up around the question when this interpretational move is warranted. In particular, Møller-Nielsen :1253–1264, 2017) has argued that one is only allowed to interpret symmetry-related models as physically equivalent when one has a characterisation of their common content. I disambiguate two versions of this claim. On the first, a perspicuous interpretation is required: an account of the models’ (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Renormalization and the Formulation of Scientific Realism.James Duncan Fraser - 2018 - Philosophy of Science 85 (5):1164-1175.
    Providing a precise statement of their position has long been a central challenge facing the scientific realist. This paper draws some morals about how realism ought to be formulated from the renormalization group framework in high energy physics.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Maxwell Gravitation.Neil Dewar - 2018 - Philosophy of Science 85 (2):249-270.
    This article gives an explicit presentation of Newtonian gravitation on the backdrop of Maxwell space-time, giving a sense in which acceleration is relative in gravitational theory. However, caution is needed: assessing whether this is a robust or interesting sense of the relativity of acceleration depends on some subtle technical issues and on substantive philosophical questions over how to identify the space-time structure of a theory.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • A Primer on Energy Conditions.Erik Curiel - 2016 - In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories. New York, NY: Birkhauser. pp. 43-104.
    An energy condition, in the context of a wide class of spacetime theories, is, crudely speaking, a relation one demands the stress-energy tensor of matter satisfy in order to try to capture the idea that "energy should be positive". The remarkable fact I will discuss in this paper is that such simple, general, almost trivial seeming propositions have profound and far-reaching import for our understanding of the structure of relativistic spacetimes. It is therefore especially surprising when one also learns that (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • On Gravitational Energy in Newtonian Theories.Neil Dewar & James Owen Weatherall - 2018 - Foundations of Physics 48 (5):558-578.
    There are well-known problems associated with the idea of gravitational energy in general relativity. We offer a new perspective on those problems by comparison with Newtonian gravitation, and particularly geometrized Newtonian gravitation. We show that there is a natural candidate for the energy density of a Newtonian gravitational field. But we observe that this quantity is gauge dependent, and that it cannot be defined in the geometrized theory without introducing further structure. We then address a potential response by showing that (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The strong arm of the law: a unified account of necessary and contingent laws of nature.Salim Hirèche, Niels Linnemann, Robert Michels & Lisa Vogt - 2021 - Synthese 199 (3-4):10211-10252.
    A common feature of all standard theories of the laws of nature is that they are "absolutist": They take laws to be either all metaphysically necessary or all contingent. Science, however, gives us reason to think that there are laws of both kinds, suggesting that standard theories should make way for "non-absolutist" alternatives: theories which accommodate laws of both modal statuses. In this paper, we set out three explanatory challenges for any candidate non-absolutist theory and discuss the prospects of the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The limitations of intertial frame spacetime functionalism.Tushar Menon & James Read - 2019 - Synthese 1 (Suppl 2):229-251.
    For Knox, ‘spacetime’ is to be defined functionally, as that which picks out a structure of local inertial frames. Assuming that Knox is motivated to construct this functional definition of spacetime on the grounds that it appears to identify that structure which plays the operational role of spacetime—i.e., that structure which is actually surveyed by physical rods and clocks built from matter fields—we identify in this paper important limitations of her approach: these limitations are based upon the fact that there (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • More problems for Newtonian cosmology.David Wallace - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 57:35-40.
    I point out a radical indeterminism in potential-based formulations of Newtonian gravity once we drop the condition that the potential vanishes at infinity. This indeterminism, which is well known in theoretical cosmology but has received little attention in foundational discussions, can be removed only by specifying boundary conditions at all instants of time, which undermines the theory's claim to be fully cosmological, i.e., to apply to the Universe as a whole. A recent alternative formulation of Newtonian gravity due to Saunders (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Spacetime structure.Thomas William Barrett - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 51:37-43.
    This paper makes an observation about the ``amount of structure'' that different classical and relativistic spacetimes posit. The observation substantiates a suggestion made by Earman and yields a cautionary remark concerning the scope and applicability of structural parsimony principles.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Black Hole Paradoxes: A Unified Framework for Information Loss.Saakshi Dulani - 2024 - Dissertation, University of Geneva
    The black hole information loss paradox is a catch-all term for a family of puzzles related to black hole evaporation. For almost 50 years, the quest to elucidate the implications of black hole evaporation has not only sustained momentum, but has also become increasingly populated with proposals that seem to generate more questions than they purport to answer. Scholars often neglect to acknowledge ongoing discussions within black hole thermodynamics and statistical mechanics when analyzing the paradox, including the interpretation of Bekenstein-Hawking (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Light Clocks and the Clock Hypothesis.Samuel C. Fletcher - 2013 - Foundations of Physics 43 (11):1369-1383.
    The clock hypothesis of relativity theory equates the proper time experienced by a point particle along a timelike curve with the length of that curve as determined by the metric. Is it possible to prove that particular types of clocks satisfy the clock hypothesis, thus genuinely measure proper time, at least approximately? Because most real clocks would be enormously complicated to study in this connection, focusing attention on an idealized light clock is attractive. The present paper extends and generalized partial (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Recovering Recovery: On the Relationship between Gauge Symmetry and Trautman Recovery.Nicholas J. Teh - 2018 - Philosophy of Science 85 (2):201-224.
    This article uncovers a foundational relationship between the ‘gauge symmetry’ of a Newton-Cartan theory and the celebrated Trautman Recovery Theorem and explores its implications for recent philosophical work on Newton-Cartan gravitation.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Getting tense about relativity.James Read & Emily Qureshi-Hurst - 2020 - Synthese 198 (9):8103-8125.
    Special relativity has been understood by many as vindicating a tenseless conception of time, denying the existence of tensed facts and a fortiori objective temporal passage. The reason for this is straightforward: both passage and the obtaining of tensed facts require a universal knife-edge present moment—yet this structure is not easily reconcilable with the relativity of simultaneity. The above being said, the prospects for tense and passage are sometimes claimed to be improved on moving to cosmological solutions of general relativity. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Inertial motion, explanation, and the foundations of classical spacetime theories.James Owen Weatherall - 2016 - In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories. New York, NY: Birkhauser. pp. 13-42.
    I begin by reviewing some recent work on the status of the geodesic principle in general relativity and the geometrized formulation of Newtonian gravitation. I then turn to the question of whether either of these theories might be said to ``explain'' inertial motion. I argue that there is a sense in which both theories may be understood to explain inertial motion, but that the sense of ``explain'' is rather different from what one might have expected. This sense of explanation is (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • General-Relativistic Covariance.Neil Dewar - 2020 - Foundations of Physics 50 (4):294-318.
    This is an essay about general covariance, and what it says about spacetime structure. After outlining a version of the dynamical approach to spacetime theories, and how it struggles to deal with generally covariant theories, I argue that we should think about the symmetry structure of spacetime rather differently in generally-covariant theories compared to non-generally-covariant theories: namely, as a form of internal rather than external symmetry structure.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Epistemic Justification and Methodological Luck in Inflationary Cosmology.C. D. McCoy - 2019 - British Journal for the Philosophy of Science 70 (4):1003-1028.
    I present a recent historical case from cosmology—the story of inflationary cosmology—and on its basis argue that solving explanatory problems is a reliable method for making progress in science. In particular, I claim that the success of inflationary theory at solving its predecessor’s explanatory problems justified the theory epistemically, even in advance of the development of novel predictions from the theory and the later confirmation of those predictions.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Two dogmas of dynamicism.James Owen Weatherall - 2020 - Synthese 199 (S2):253-275.
    I critically discuss two dogmas of the “dynamical approach” to spacetime in general relativity, as advanced by Harvey Brown [Physical Relativity Oxford:Oxford University Press] and collaborators. The first dogma is that positing a “spacetime geometry” has no implications for the behavior of matter. The second dogma is that postulating the “Strong Equivalence Principle” suffices to ensure that matter is “adapted” to spacetime geometry. I conclude by discussing “spacetime functionalism”. The discussion is presented in reaction to and sympathy with recent work (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Theoretical Equivalence in Physics.James Owen Weatherall - unknown
    I review the philosophical literature on the question of when two physical theories are equivalent. This includes a discussion of empirical equivalence, which is often taken to be necessary, and sometimes taken to be sufficient, for theoretical equivalence; and "interpretational" equivalence, which is the idea that two theories are equivalent just in case they have the same interpretation. It also includes a discussion of several formal notions of equivalence that have been considered in the recent philosophical literature, including definitional equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On the Existence of Spacetime Structure.Erik Curiel - 2014 - British Journal for the Philosophy of Science:axw014.
    I examine the debate between substantivalists and relationalists about the ontological character of spacetime and conclude it is not well posed. I argue that the hole argument does not bear on the debate, because it provides no clear criterion to distinguish the positions. I propose two such precise criteria and construct separate arguments based on each to yield contrary conclusions, one supportive of something like relationalism and the other of something like substantivalism. The lesson is that one must fix an (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On the Status of Newtonian Gravitational Radiation.Niels Linnemann & James Read - 2021 - Foundations of Physics 51 (2):1-16.
    We discuss the status of gravitational radiation in Newtonian theories. In order to do so, we consider various options for interpreting the Poisson equation as encoding propagating solutions, reflect on the extent to which limit considerations from general relativity can shed light on the Poisson equation’s conceptual status, and discuss various senses in which the Poisson equation counts as a dynamical equation.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Conservation, inertia, and spacetime geometry.James Owen Weatherall - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:144-159.
    As Harvey Brown emphasizes in his book Physical Relativity, inertial motion in general relativity is best understood as a theorem, and not a postulate. Here I discuss the status of the "conservation condition", which states that the energy-momentum tensor associated with non-interacting matter is covariantly divergence-free, in connection with such theorems. I argue that the conservation condition is best understood as a consequence of the differential equations governing the evolution of matter in general relativity and many other theories. I conclude (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Singularities and Black holes.Erik Curiel - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (In)effective realism?Juha Saatsi - 2022 - European Journal for Philosophy of Science 12 (2):1-16.
    Matthias Egg argues that scientific realism can be reconciled with quantum mechanics and its foundational underdetermination by focusing realist commitments on ‘effective’ ontology. I argue in general terms that Egg’s effective realism is ontologically overly promiscuous. I illustrate the issue in relation to both Newtonian mechanics and quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • It ain't necessarily so: Gravitational waves and energy transport.Patrick M. Duerr - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 65:25-40.
    In the following paper, I review and critically assess the four standard routes commonly taken to establish that gravitational waves possess energy-momentum: the increase in kinetic energy a GW confers on a ring of test particles, Bondi/Feynman’s Sticky Bead Argument of a GW heating up a detector, nonlinearities within perturbation theory, taken to reflect the fact that gravity contributes to its own source, and the Noether Theorems, linking symmetries and conserved quantities. Each argument is found to either to presuppose controversial (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Classical Spacetime Structure.James Owen Weatherall - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    I discuss several issues related to "classical" spacetime structure. I review Galilean, Newtonian, and Leibnizian spacetimes, and briefly describe more recent developments. The target audience is undergraduates and early graduate students in philosophy; the presentation avoids mathematical formalism as much as possible.
    Download  
     
    Export citation  
     
    Bookmark   4 citations