Switch to: Citations

Add references

You must login to add references.
  1. Averaging the truth-value in łukasiewicz logic.Daniele Mundici - 1995 - Studia Logica 55 (1):113 - 127.
    Chang's MV algebras are the algebras of the infinite-valued sentential calculus of ukasiewicz. We introduce finitely additive measures (called states) on MV algebras with the intent of capturing the notion of average degree of truth of a proposition. Since Boolean algebras coincide with idempotent MV algebras, states yield a generalization of finitely additive measures. Since MV algebras stand to Boolean algebras as AFC*-algebras stand to commutative AFC*-algebras, states are naturally related to noncommutativeC*-algebraic measures.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • (1 other version)Effect algebras and unsharp quantum logics.D. J. Foulis & M. K. Bennett - 1994 - Foundations of Physics 24 (10):1331-1352.
    The effects in a quantum-mechanical system form a partial algebra and a partially ordered set which is the prototypical example of the effect algebras discussed in this paper. The relationships among effect algebras and such structures as orthoalgebras and orthomodular posets are investigated, as are morphisms and group- valued measures (or charges) on effect algebras. It is proved that there is a universal group for every effect algebra, as well as a universal vector space over an arbitrary field.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Phi-symmetric effect algebras.M. K. Bennett & D. J. Foulis - 1995 - Foundations of Physics 25 (12):1699-1722.
    The notion of a Sasaki projectionon an orthomodular lattice is generalized to a mapping Φ: E × E → E, where E is an effect algebra. If E is lattice ordered and Φ is symmetric, then E is called a Φ-symmetric effect algebra.This paper launches a study of such effect algebras. In particular, it is shown that every interval effect algebra with a lattice-ordered ambient group is Φ-symmetric, and its group is the one constructed by Ravindran in his proof that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Algebraic foundations of many-valued reasoning.Roberto Cignoli - 1999 - Boston: Kluwer Academic Publishers. Edited by Itala M. L. D'Ottaviano & Daniele Mundici.
    This unique textbook states and proves all the major theorems of many-valued propositional logic and provides the reader with the most recent developments and trends, including applications to adaptive error-correcting binary search. The book is suitable for self-study, making the basic tools of many-valued logic accessible to students and scientists with a basic mathematical knowledge who are interested in the mathematical treatment of uncertain information. Stressing the interplay between algebra and logic, the book contains material never before published, such as (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations