Switch to: Citations

Add references

You must login to add references.
  1. Theories of Newtonian gravity and empirical indistinguishability.Jonathan Bain - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):345--76.
    In this essay, I examine the curved spacetime formulation of Newtonian gravity known as Newton–Cartan gravity and compare it with flat spacetime formulations. Two versions of Newton–Cartan gravity can be identified in the physics literature—a ‘‘weak’’ version and a ‘‘strong’’ version. The strong version has a constrained Hamiltonian formulation and consequently a well-defined gauge structure, whereas the weak version does not (with some qualifications). Moreover, the strong version is best compared with the structure of what Earman (World enough and spacetime. (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Theories of Newtonian gravity and empirical indistinguishability.Jonathan Bain - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):345-376.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Albert Einstein: Philosopher-Scientist.Stephen Toulmin - 1950 - Science and Society 14 (4):353-360.
    Download  
     
    Export citation  
     
    Bookmark   152 citations  
  • The cosmological constant, the fate of the universe, unimodular gravity, and all that.John Earman - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (4):559-577.
    The cosmological constant is back. Several lines of evidence point to the conclusion that either there is a positive cosmological constant or else the universe is filled with a strange form of matter (“quintessence”) that mimics some of the effects of a positive lambda. This paper investigates the implications of the former possibility. Two senses in which the cosmological constant can be a constant are distinguished: the capital Λ sense in which lambda is a universal constant on a par with (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Foundations of Space-Time Theories.Micheal Friedman - 1983 - Princeton University Press.
    Download  
     
    Export citation  
     
    Bookmark   252 citations  
  • Thoroughly modern Mctaggart: Or, what Mctaggart would have said if he had read the general theory of relativity.John Earman - 2002 - Philosophers' Imprint 2:1-28.
    The philosophical literature on time and change is fixated on the issue of whether the B-series account of change is adequate or whether real change requires Becoming of either the property-based variety of McTaggart's A-series or the non-property-based form embodied in C. D. Broad's idea of the piling up of successive layers of existence. For present purposes it is assumed that the B-series suffices to ground real change. But then it is noted that modern science in the guise of Einstein's (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • How Einstein Found His Field Equations: 1912-1915.John D. Norton - unknown
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • An example relevant to the kretschmann-Einstein debate.Rafael Sorkin - 2001 - Modern Physics Letters A 17:695--700.
    We cast the flat space theory of a scalar field in generally covariant form by introducing an auxiliary field $\lambda$. The resulting theory is couched in terms of an action integral $S$, and all the fields (the scalar, the spacetime metric, and $\lambda$) are dynamical in the sense of being varied freely in $S$. Conservation of energy-momentum emerges as a formal consequence of diffeomorphism invariance, in close analogy with the situation in ordinary general relativity.
    Download  
     
    Export citation  
     
    Bookmark   24 citations