Switch to: References

Citations of:

Foundations of Space-Time Theories

Princeton University Press (1983)

Add citations

You must login to add citations.
  1. Dynamical versus structural explanations in scientific revolutions.Mauro Dorato - 2017 - Synthese 194 (7):2307-2327.
    By briefly reviewing three well-known scientific revolutions in fundamental physics (the discovery of inertia, of special relativity and of general relativity), I claim that problems that were supposed to be crying for a dynamical explanation in the old paradigm ended up receiving a structural explanation in the new one. This claim is meant to give more substance to Kuhn’s view that revolutions are accompanied by a shift in what needs to be explained, while suggesting at the same time the existence (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Geometry of Conventionality.James Owen Weatherall & John Byron Manchak - 2014 - Philosophy of Science 81 (2):233-247.
    There is a venerable position in the philosophy of space and time that holds that the geometry of spacetime is conventional, provided one is willing to postulate a “universal force field.” Here we ask a more focused question, inspired by this literature: in the context of our best classical theories of space and time, if one understands “force” in the standard way, can one accommodate different geometries by postulating a new force field? We argue that the answer depends on one’s (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On Where Things Could Be.Jeffrey Sanford Russell - 2014 - Philosophy of Science 81 (1):60-80.
    Some philosophers respond to Leibniz’s “shift” argument against absolute space by appealing to antihaecceitism about possible worlds, using David Lewis’s counterpart theory. But separated from Lewis’s distinctive system, it is difficult to understand what this doctrine amounts to or how it bears on the Leibnizian argument. In fact, the best way of making sense of the relevant kind of antihaecceitism concedes the main point of the Leibnizian argument, pressing us to consider alternative spatiotemporal metaphysics.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Newton, the Parts of Space, and the Holism of Spatial Ontology.Edward Slowik - 2011 - Hopos: The Journal of the International Society for the History of Philosophy of Science 1 (2):249-272.
    This article investigates the problem of the identity of the parts of space in Newton’s natural philosophy, as well as the holistic or structuralist nature of Newton’s ontology of space. Additionally, this article relates the lessons reached in this historical and philosophical investigation to analogous debates in contemporary space-time ontology. While previous contributions, by Nerlich, Huggett, and others, have proven to be informative in evaluating Newton’s claims, it will be argued that the underlying goals of Newton’s views have largely eluded (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Deep Metaphysics of Quantum Gravity: The Seventeenth Century Legacy and an Alternative Ontology Beyond Substantivalism and Relationism.Edward Slowik - 2013 - Studies in the History and Philosophy of Modern Physics 44 (4):490-499.
    This essay presents an alternative to contemporary substantivalist and relationist interpretations of quantum gravity hypotheses by means of an historical comparison with the ontology of space in the seventeenth century. Utilizing differences in the spatial geometry between the foundational theory and the theory derived from the foundational, in conjunction with nominalism and platonism, it will be argued that there are crucial similarities between seventeenth century and contemporary theories of space, and that these similarities reveal a host of underlying conceptual issues (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Formal statement of the special principle of relativity.Marton Gomori & Laszlo E. Szabo - 2015 - Synthese 192 (7):1-24.
    While there is a longstanding discussion about the interpretation of the extended, general principle of relativity, there seems to be a consensus that the special principle of relativity is absolutely clear and unproblematic. However, a closer look at the literature on relativistic physics reveals a more confusing picture. There is a huge variety of, sometimes metaphoric, formulations of the relativity principle, and there are different, sometimes controversial, views on its actual content. The aim of this paper is to develop a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Synchronization Gauges and the Principles of Special Relativity.Guido Rizzi, Matteo Luca Ruggiero & Alessio Serafini - 2004 - Foundations of Physics 34 (12):1835-1887.
    The axiomatic bases of Special Relativity Theory (SRT) are thoroughly re-examined from an operational point of view, with particular emphasis on the status of Einstein synchronization in the light of the possibility of arbitrary synchronization procedures in inertial reference frames. Once correctly and explicitly phrased, the principles of SRT allow for a wide range of “theories” that differ from the standard SRT only for the difference in the chosen synchronization procedures, but are wholly equivalent to SRT in predicting empirical facts. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On locality in quantum general relativity and quantum gravity.Eduard Prugovečki - 1996 - Foundations of Physics 26 (12):1645-1668.
    The physical concept of locality is first analyzed in the special relativistic quantum regime, and compared with that of microcausality and the local commutativity of quantum fields. Its extrapolation to quantum general relativity on quantum bundles over curved spacetime is then described. It is shown that the resulting formulation of quantum-geometric locality based on the concept of local quantum frame incorporating a fundamental length embodies the key geometric and topological aspects of this concept. Taken in conjunction with the strong equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The mathematical structure of Newtonian spacetime: Classical dynamics and gravitation. [REVIEW]Waldyr A. Rodrigues, Quintino A. G. de Souza & Yuri Bozhkov - 1995 - Foundations of Physics 25 (6):871-924.
    We give a precise and modern mathematical characterization of the Newtonian spacetime structure (ℕ). Our formulation clarifies the concepts of absolute space, Newton's relative spaces, and absolute time. The concept of reference frames (which are “timelike” vector fields on ℕ) plays a fundamental role in our approach, and the classification of all possible reference frames on ℕ is investigated in detail. We succeed in identifying a Lorentzian structure on ℕ and we study the classical electrodynamics of Maxwell and Lorentz relative (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Coordinates and covariance: Einstein's view of space-time and the modern view. [REVIEW]John Norton - 1989 - Foundations of Physics 19 (10):1215-1263.
    Where modern formulations of relatively theory use differentiable manifolds to space-time, Einstein simply used open sets of R 4 , following the then current methods of differential geometry. This fact aids resolution of a number of outstanding puzzles concerning Einstein's use of coordinate systems and covariance principles, including the claimed physical significance of covariance principles, their connection to relativity principles, Einstein's apparent confusion of coordinate systems and frames of reference, and his failure to distinguish active and passive transformations, especially in (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Is Empty Spacetime a Physical Thing?Diego Meschini & Markku Lehto - 2006 - Foundations of Physics 36 (8):1193-1216.
    This article deals with empty spacetime and the question of its physical reality. By “empty spacetime” we mean a collection of bare spacetime points, the remains of ridding spacetime of all matter and fields. We ask whether these geometric objects—themselves intrinsic to the concept of field—might be observable through some physical test. By taking quantum-mechanical notions into account, we challenge the negative conclusion drawn from the diffeomorphism invariance postulate of general relativity, and we propose new foundational ideas regarding the possible (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Novel Predictions and the No Miracle Argument.Mario Alai - 2014 - Erkenntnis 79 (2):297-326.
    Predictivists use the no miracle argument to argue that “novel” predictions are decisive evidence for theories, while mere accommodation of “old” data cannot confirm to a significant degree. But deductivists claim that since confirmation is a logical theory-data relationship, predicted data cannot confirm more than merely deduced data, and cite historical cases in which known data confirmed theories quite strongly. On the other hand, the advantage of prediction over accommodation is needed by scientific realists to resist Laudan’s criticisms of the (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Mathematical Modeling in Biology: Philosophy and Pragmatics.Rasmus Grønfeldt Winther - 2012 - Frontiers in Plant Evolution and Development 2012:1-3.
    Philosophy can shed light on mathematical modeling and the juxtaposition of modeling and empirical data. This paper explores three philosophical traditions of the structure of scientific theory—Syntactic, Semantic, and Pragmatic—to show that each illuminates mathematical modeling. The Pragmatic View identifies four critical functions of mathematical modeling: (1) unification of both models and data, (2) model fitting to data, (3) mechanism identification accounting for observation, and (4) prediction of future observations. Such facets are explored using a recent exchange between two groups (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Structuralism’s Multiple Paths through Spacetime Theories.Edward Slowik - 2012 - European Journal for Philosophy of Science 2 (1):45-66.
    This essay examines the underdetermination problem that plagues structuralist approaches to spacetime theories, with special emphasis placed on the epistemic brands of structuralism, whether of the scientific realist variety or not. Recent non-realist structuralist accounts, by Friedman and van Fraassen, have touted the fact that different structures can accommodate the same evidence as a virtue vis-à-vis their realist counterparts; but, as will be argued, these claims gain little traction against a properly constructed liberal version of epistemic structural realism. Overall, a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Direction of Time.Steven F. Savitt - 1996 - British Journal for the Philosophy of Science 47 (3):347-370.
    The aim of this essay is to introduce philosophers of science to some recent philosophical discussions of the nature and origin of the direction of time. The essay is organized around books by Hans Reichenbach, Paul Horwich, and Huw Price. I outline their major arguments and treat certain critical points in detail. I speculate at the end about the ways in which the subject may continue to develop and in which it may connect with other areas of philosophy.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Time in the special theory of relativity.Steven Savitt & Roberto Torretti - 2011 - In Craig Callender (ed.), The Oxford Handbook of Philosophy of Time. Oxford University Press. pp. 546--570.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Leibniz's Models of Rational Decision.Markku Roinila - 2008 - In Marcelo Dascal (ed.), Leibniz: What Kind of Rationalist? Springer. pp. 357-370.
    Leibniz frequently argued that reasons are to be weighed against each other as in a pair of scales, as Professor Marcelo Dascal has shown in his article "The Balance of Reason." In this kind of weighing it is not necessary to reach demonstrative certainty – one need only judge whether the reasons weigh more on behalf of one or the other option However, a different kind of account about rational decision-making can be found in some of Leibniz's writings. In his (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A new look at relational holism in quantum mechanics.Matteo Morganti - 2009 - Philosophy of Science 76 (5):1027--1038.
    Teller argued that violations of Bell’s inequalities are to be explained by interpreting quantum entangled systems according to ‘relational holism’, that is, by postulating that they exhibit irreducible (‘inherent’) relations. Teller also suggested a possible application of this idea to quantum statistics. However, the basic proposal was not explained in detail nor has the additional idea about statistics been articulated in further work. In this article, I reconsider relational holism, amending it and spelling it out as appears necessary for a (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Schaffner’s Model of Theory Reduction: Critique and Reconstruction.Rasmus Gr⊘Nfeldt Winther - 2009 - Philosophy of Science 76 (2):119-142.
    Schaffner’s model of theory reduction has played an important role in philosophy of science and philosophy of biology. Here, the model is found to be problematic because of an internal tension. Indeed, standard antireductionist external criticisms concerning reduction functions and laws in biology do not provide a full picture of the limits of Schaffner’s model. However, despite the internal tension, his model usefully highlights the importance of regulative ideals associated with the search for derivational, and embedding, deductive relations among mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Extending Hartry field's instrumental account of applied mathematics to statistical mechanics.Glen Meyer - 2009 - Philosophia Mathematica 17 (3):273-312.
    A serious flaw in Hartry Field’s instrumental account of applied mathematics, namely that Field must overestimate the extent to which many of the structures of our mathematical theories are reflected in the physical world, underlies much of the criticism of this account. After reviewing some of this criticism, I illustrate through an examination of the prospects for extending Field’s account to classical equilibrium statistical mechanics how this flaw will prevent any significant extension of this account beyond field theories. I note (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the meaning of the relativity principle and other symmetries.Harvey R. Brown & Roland Sypel - 1995 - International Studies in the Philosophy of Science 9 (3):235 – 253.
    Abstract The historical evolution of the principle of relativity from Galileo to Einstein is briefly traced, and purported difficulties with Einstein's formulation of the principle are examined and dismissed. This formulation is then compared to a precise version formulated recently in the geometrical language of spacetime theories. We claim that the recent version is both logically puzzling and fails to capture a crucial physical insight contained in the earlier formulations. The implications of this claim for the modern treatment of general (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Minkowski space-time and thermodynamics.Friedel Weinert - unknown
    The purpose of this paper is twofold: a) to explore the compatibility of Minkowski’s space-time representation of the Special theory of relativity with a dynamic conception of space-time; b) to locate its roots in invariant features - like entropic relations - of the propagation of signals in space-time. From its very beginning Minkowski’s four-dimensional space-time was associated with a static view of reality, e.g. a block universe. Einstein added his influential voice to this conception when he wrote: ‘From a “happening” (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Absolute objects, counterexamples and general covariance.J. Brian Pitts - unknown
    The Anderson-Friedman absolute objects program has been a favorite analysis of the substantive general covariance that supposedly characterizes Einstein's General Theory of Relativity (GTR). Absolute objects are the same locally in all models (modulo gauge freedom). Substantive general covariance is the lack of absolute objects. Several counterexamples have been proposed, however, including the Jones-Geroch dust and Torretti constant curvature spaces counterexamples. The Jones-Geroch dust case, ostensibly a false positive, is resolved by noting that holes in the dust in some models (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Identity, space-time, and cosmology.Jan Faye - 2008 - In Dennis Geert Bernardus Johan Dieks (ed.), The Ontology of Spacetime II. Elsevier. pp. 39-57.
    Modern cosmology treats space and time, or rather space-time, as concrete particulars. The General Theory of Relativity combines the distribution of matter and energy with the curvature of space-time. Here space-time appears as a concrete entity which affects matter and energy and is affected by the things in it. I question the idea that space-time is a concrete existing entity which both substantivalism and reductive relationism maintain. Instead I propose an alternative view, which may be called non-reductive relationism, by arguing (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Huygens' Center-of-Mass Space-time Reference Frame: Constructing a Cartesian Dynamics in the Wake of Newton's “de gravitatione” Argument.Edward Slowik - 1997 - Synthese 112 (2):247-269.
    This paper explores the possibility of constructing a Cartesian space-time that can resolve the dilemma posed by a famous argument from Newton's early essay, De gravitatione. In particular, Huygens' concept of a center-of-mass reference frame is utilized in an attempt to reconcile Descartes' relationalist theory of space and motion with both the Cartesian analysis of bodily impact and conservation law for quantity of motion. After presenting a modern formulation of a Cartesian space-time employing Huygens' frames, a series of Newtonian counter-replies (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • "Coordinative definition" and Reichenbach's semantic framework: A reassessment.Lionel Stefan Shapiro - 1994 - Erkenntnis 41 (3):287 - 323.
    Reichenbach's Philosophy of Space and Time (1928) avoids most of the logical positivist pitfalls it is generally held to exemplify, notably both conventionalism and verificationism. To see why, we must appreciate that Reichenbach's interest lies in how mathematical structures can be used to describe reality, not in how words like 'distance' acquire meaning. Examination of his proposed "coordinative definition" of congruence shows that Reichenbach advocates a reductionist analysis of the relations figuring in physical geometry (contrary to common readings that attribute (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Did Einstein stumble? The debate over general covariance.John D. Norton - 1995 - Erkenntnis 42 (2):223 - 245.
    The objection that Einstein's principle of general covariance is not a relativity principle and has no physical content is reviewed. The principal escapes offered for Einstein's viewpoint are evaluated.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Holes, haecceitism and two conceptions of determinism.Joseph Melia - 1999 - British Journal for the Philosophy of Science 50 (4):639--64.
    In this paper I claim that Earman and Norton 's hole argument against substantivalist interpretations of General Relativity assumes that the substantivalist must adopt a conception of determinism which I argue is unsatisfactory. Butterfield and others have responded to the hole argument by finding a conception of determinism open to the substantivalist that is not prone to the hole argument. But, unfortunately for the substantivalist, I argue this conception also turns out to be unsatisfactory. Accordingly, I search for a conception (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Apriority and applied mathematics.Robert A. Holland - 1992 - Synthese 92 (3):349 - 370.
    I argue that we need not accept Quine's holistic conception of mathematics and empirical science. Specifically, I argue that we should reject Quine's holism for two reasons. One, his argument for this position fails to appreciate that the revision of the mathematics employed in scientific theories is often related to an expansion of the possibilities of describing the empirical world, and that this reveals that mathematics serves as a kind of rational framework for empirical theorizing. Two, this holistic conception does (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cartesianism and the Kinematics of Mechanisms: Or, How to find Fixed Reference Frames in a Cartesian Space-time.Edward Slowik - 1998 - Noûs 32 (3):364-385.
    In De gravitatione, Newton contends that Descartes' physics is fundamentally untenable since the "fixed" spatial landmarks required to ground the concept of inertial motion cannot be secured in the constantly changing Cartesian plenum. Likewise, it is has often been alleged that the collision rules in Descartes' Principles of Philosophy undermine the "relational" view of space and motion advanced in this text. This paper attempts to meet these challenges by investigating the theory of connected gears (or "kinematics of mechanisms") for a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Descartes, Spacetime, and Relational Motion.Edward Slowik - 1999 - Philosophy of Science 66 (1):117-139.
    This paper examines Descartes' problematic relational theory of motion, especially when viewed within the context of his dynamics, the Cartesian natural laws. The work of various commentators on Cartesian motion is also surveyed, with particular emphasis placed upon the recent important texts of Garber and Des Chene. In contrast to the methodology of most previous interpretations, however, this essay employs a modern "spacetime" approach to the problem. By this means, the role of dynamics in Descartes' theory, which has often been (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Spacetime, Ontology, and Structural Realism.Edward Slowik - 2005 - International Studies in the Philosophy of Science 19 (2):147 – 166.
    This essay explores the possibility of constructing a structural realist interpretation of spacetime theories that can resolve the ontological debate between substantivalists and relationists. Drawing on various structuralist approaches in the philosophy of mathematics, as well as on the theoretical complexities of general relativity, our investigation will reveal that a structuralist approach can be beneficial to the spacetime theorist as a means of deflating some of the ontological disputes regarding similarly structured spacetimes.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Space, number and structure: A tale of two debates.Stewart Shapiro - 1996 - Philosophia Mathematica 4 (2):148-173.
    Around the turn of the century, Poincare and Hilbert each published an account of geometry that took the discipline to be an implicit definition of its concepts. The terms ‘point’, ‘line’, and ‘plane’ can be applied to any system of objects that satisfies the axioms. Each mathematician found spirited opposition from a different logicist—Russell against Poincare' and Frege against Hilbert— who maintained the dying view that geometry essentially concerns space or spatial intuition. The debates illustrate the emerging idea of mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Agnostic empiricism versus scientific realism: Belief in truth matters.Stathis Psillos - 2000 - International Studies in the Philosophy of Science 14 (1):57 – 75.
    This paper aims to defend scientific realism against two versions of agnostic empiricism: a naive agnostic position, which suggests that the only rational option is to remain agnostic as to the truth of theoretical assertions, and van Fraassen's more sophisticated agnostic empiricism - which may be called "Hypercritical Empiricism". It first argues that given semantic realism, naive agnostic empiricism cannot be maintained: there is no relevant epistemic difference between theoretical assertions and observational ones. It then focuses on van Fraassen's more (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Induction and scientific realism: Einstein versus Van Fraassen part three: Einstein, aim-oriented empiricism and the discovery of special and general relativity.Nicholas Maxwell - 1993 - British Journal for the Philosophy of Science 44 (2):275-305.
    In this paper I show that Einstein made essential use of aim-oriented empiricism in scientific practice in developing special and general relativity. I conclude by considering to what extent Einstein came explicitly to advocate aim-oriented empiricism in his later years.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Change without change, and how to observe it in general relativity.Richard Healey - 2004 - Synthese 141 (3):381 - 415.
    All change involves temporal variation of properties. There is change in the physical world only if genuine physical magnitudes take on different values at different times. I defend the possibility of change in a general relativistic world against two skeptical arguments recently presented by John Earman. Each argument imposes severe restrictions on what may count as a genuine physical magnitude in general relativity. These restrictions seem justified only as long as one ignores the fact that genuine change in a relativistic (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • How to Tell When Simpler, More Unified, or Less A d Hoc Theories Will Provide More Accurate Predictions.Malcolm R. Forster & Elliott Sober - 1994 - British Journal for the Philosophy of Science 45 (1):1-35.
    Traditional analyses of the curve fitting problem maintain that the data do not indicate what form the fitted curve should take. Rather, this issue is said to be settled by prior probabilities, by simplicity, or by a background theory. In this paper, we describe a result due to Akaike [1973], which shows how the data can underwrite an inference concerning the curve's form based on an estimate of how predictively accurate it will be. We argue that this approach throws light (...)
    Download  
     
    Export citation  
     
    Bookmark   227 citations  
  • Unnatural attitudes: Realist and instrumentalist attachments to science.Arthur Fine - 1986 - Mind 95 (378):149-179.
    The realist programme has degenerated by now to the point where it is quite beyond salvage. A token of this degeneration is that there are altogether too many realisms. It is as though by splitting into a confusing array of types and kinds, realism has hoped that some one variety might yet escape extinct. I shall survey the debate, and some of these realisms, below. Here I would just point out the obvious; that in so far as the successes of (...)
    Download  
     
    Export citation  
     
    Bookmark   123 citations  
  • (1 other version)Theories of Newtonian gravity and empirical indistinguishability.Jonathan Bain - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):345--76.
    In this essay, I examine the curved spacetime formulation of Newtonian gravity known as Newton–Cartan gravity and compare it with flat spacetime formulations. Two versions of Newton–Cartan gravity can be identified in the physics literature—a ‘‘weak’’ version and a ‘‘strong’’ version. The strong version has a constrained Hamiltonian formulation and consequently a well-defined gauge structure, whereas the weak version does not (with some qualifications). Moreover, the strong version is best compared with the structure of what Earman (World enough and spacetime. (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • (1 other version)Geometry and motion.Gordon Belot - 2000 - British Journal for the Philosophy of Science 51 (4):561--95.
    I will discuss only one of the several entwined strands of the philosophy of space and time, the question of the relation between the nature of motion and the geometrical structure of the world.1 This topic has many of the virtues of the best philosophy of science. It is of long-standing philosophical interest and has a rich history of connections to problems of physics. It has loomed large in discussions of space and time among contemporary philosophers of science. Furthermore, there (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Proofs and pictures.James Robert Brown - 1997 - British Journal for the Philosophy of Science 48 (2):161-180.
    Everyone appreciates a clever mathematical picture, but the prevailing attitude is one of scepticism: diagrams, illustrations, and pictures prove nothing; they are psychologically important and heuristically useful, but only a traditional verbal/symbolic proof provides genuine evidence for a purported theorem. Like some other recent writers (Barwise and Etchemendy [1991]; Shin [1994]; and Giaquinto [1994]) I take a different view and argue, from historical considerations and some striking examples, for a positive evidential role for pictures in mathematics.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Theories of space-time in modern physics.Luciano Boi - 2004 - Synthese 139 (3):429 - 489.
    The physicist's conception of space-time underwent two major upheavals thanks to the general theory of relativity and quantum mechanics. Both theories play a fundamental role in describing the same natural world, although at different scales. However, the inconsistency between them emerged clearly as the limitation of twentieth-century physics, so a more complete description of nature must encompass general relativity and quantum mechanics as well. The problem is a theorists' problem par excellence. Experiment provide little guide, and the inconsistency mentioned above (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • L’étalonnage des instruments de mesure en physique expérimentale : le cas du télescope spatial James Webb.Carlo Calvi - 2024 - Dissertation, Université de Montréal
    Philosophers and scientists have often adopted the orthodox version of calibration which involves standardizing an instrument using a known phenomenon. The essential link between theoretical concepts and empirical data, in the philosophy of measurement, has generated the formulation of principles of coordination, synthetic a priori, and revisables. Operationalist thinking wanted to limit the scope of concepts to operations of measurement that are actually achievable. The coherentist perspective in the philosophy of measurement has operated a recovery of coordinationist epistemology and operationalism, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of Space‐Time Physics.Craig Callender & Carl Hoefer - 2002 - In Peter K. Machamer & Michael Silberstein (eds.), The Blackwell guide to the philosophy of science. Malden, Mass.: Blackwell. pp. 173–198.
    This chapter contains sections titled: Relationism, Substantivalism and Space‐time Conventionalism about Space‐time Black Holes and Singularities Horizons and Uniformity Conclusion.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The general-relativistic case for super-substantivalism.Claudio Calosi & Patrick M. Duerr - 2021 - Synthese 199 (5-6):13789-13822.
    Super-substantivalism (of the type we’ll consider) roughly comprises two core tenets: (1) the physical properties which we attribute to matter (e.g. charge or mass) can be attributed to spacetime directly, with no need for matter as an extraneous carrier “on top of” spacetime; (2) spacetime is more fundamental than (ontologically prior to) matter. In the present paper, we revisit a recent argument in favour of super-substantivalism, based on General Relativity. A critique is offered that highlights the difference between (various accounts (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Conventionalism about time direction.Matt Farr - 2022 - Synthese 200 (1):1-21.
    In what sense is the direction of time a matter of convention? In 'The Direction of Time', Hans Reichenbach makes brief reference to parallels between his views about the status of time’s direction and his conventionalism about geometry. In this article, I: (1) provide a conventionalist account of time direction motivated by a number of Reichenbach’s claims in the book; (2) show how forwards and backwards time can give equivalent descriptions of the world despite the former being the ‘natural’ direction (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Neo-Lorentzian Relativity and the Beginning of the Universe.Daniel Linford - 2021 - European Journal for Philosophy of Science 11 (4):1-38.
    Many physicists have thought that absolute time became otiose with the introduction of Special Relativity. William Lane Craig disagrees. Craig argues that although relativity is empirically adequate within a domain of application, relativity is literally false and should be supplanted by a Neo-Lorentzian alternative that allows for absolute time. Meanwhile, Craig and co-author James Sinclair have argued that physical cosmology supports the conclusion that physical reality began to exist at a finite time in the past. However, on their view, the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scientific Realism and Further Underdetermination Challenges.Mario Alai - 2021 - Axiomathes 31 (6):779-789.
    In an earlier article on this journal I argued that the problem of empirical underdetermination can for the largest part be solved by theoretical virtues, and for the remaining part it can be tolerated. Here I confront two further challenges to scientific realism based on underdetermination. First, there are four classes of theories which may seem to be underdetermined even by theoretical virtues. Concerning them I argue that (i) theories produced by trivial permutations and (ii) “equivalent descriptions” are compatible with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The dynamical approach to spin-2 gravity.Kian Salimkhani - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:29-45.
    This paper engages with the following closely related questions that have recently received some attention in the literature: what is the status of the equivalence principle in general relativity?; how does the metric field obtain its property of being able to act as a metric?; and is the metric of GR derivative on the dynamics of the matter fields? The paper attempts to complement these debates by studying the spin-2 approach to gravity. In particular, the paper argues that three lessons (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Acerca del realismo sobre el espaciotiempo.Gilberto Castrejón - 2020 - Scientia in Verba Magazine 6 (1):75-94.
    En el ámbito de la teoría general de la relatividad (TGR), se considera que el espaciotiempo es una entidad real. En este sentido, atendiendo al realis mo sobre entidades, surgen problemas como ¿qué tipo de entidad es el espaciotiempo?, ¿cuál es su naturaleza? Tradicionalmente, en atención a dicha teoría conviven dos concepciones realistas: la substancialista, donde el espaciotiempo sería una substancia; y la relacionista, tal que el espaciotiempo correspondería a una “relación entre substancias”.
    Download  
     
    Export citation  
     
    Bookmark