Switch to: Citations

References in:

On Adjoint and Brain Functors

Axiomathes 26 (1):41-61 (2016)

Add references

You must login to add references.
  1. Category Theory.Steve Awodey - 2006 - Oxford, England: Oxford University Press.
    A comprehensive reference to category theory for students and researchers in mathematics, computer science, logic, cognitive science, linguistics, and philosophy. Useful for self-study and as a course text, the book includes all basic definitions and theorems, as well as numerous examples and exercises.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Adjoints and emergence: Applications of a new theory of adjoint functors. [REVIEW]David Ellerman - 2007 - Axiomathes 17 (1):19-39.
    Since its formal definition over sixty years ago, category theory has been increasingly recognized as having a foundational role in mathematics. It provides the conceptual lens to isolate and characterize the structures with importance and universality in mathematics. The notion of an adjunction (a pair of adjoint functors) has moved to center-stage as the principal lens. The central feature of an adjunction is what might be called “determination through universals” based on universal mapping properties. A recently developed “heteromorphic” theory about (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)The iterative conception of set.George Boolos - 1971 - Journal of Philosophy 68 (8):215-231.
    Download  
     
    Export citation  
     
    Bookmark   202 citations  
  • Rosen's modelling relations via categorical adjunctions.Elias Zafiris - 2012 - International Journal of General Systems 41 (5):439-474.
    Rosen's modelling relations constitute a conceptual schema for the understanding of the bidirectional process of correspondence between natural systems and formal symbolic systems. The notion of formal systems used in this study refers to information structures constructed as algebraic rings of observable attributes of natural systems, in which the notion of observable signifies a physical attribute that, in principle, can be measured. Due to the fact that modelling relations are bidirectional by construction, they admit a precise categorical formulation in terms (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (3 other versions)Principles of mathematics.Bertrand Russell - 1931 - New York,: W.W. Norton & Company.
    Published in 1903, this book was the first comprehensive treatise on the logical foundations of mathematics written in English. It sets forth, as far as possible without mathematical and logical symbolism, the grounds in favour of the view that mathematics and logic are identical. It proposes simply that what is commonly called mathematics are merely later deductions from logical premises. It provided the thesis for which _Principia Mathematica_ provided the detailed proof, and introduced the work of Frege to a wider (...)
    Download  
     
    Export citation  
     
    Bookmark   462 citations  
  • (3 other versions)Principles of Mathematics.Bertrand Russell - 1937 - New York,: Routledge.
    First published in 1903, _Principles of Mathematics_ was Bertrand Russell’s first major work in print. It was this title which saw him begin his ascent towards eminence. In this groundbreaking and important work, Bertrand Russell argues that mathematics and logic are, in fact, identical and what is commonly called mathematics is simply later deductions from logical premises. Highly influential and engaging, this important work led to Russell’s dominance of analytical logic on western philosophy in the twentieth century.
    Download  
     
    Export citation  
     
    Bookmark   128 citations  
  • General Theory of Natural Equivalences.Saunders MacLane & Samuel Eilenberg - 1945 - Transactions of the American Mathematical Society:231-294.
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Categories for the Working Mathematician.Saunders Maclane - 1971 - Springer.
    Category Theory has developed rapidly. This book aims to present those ideas and methods which can now be effectively used by Mathe­ maticians working in a variety of other fields of Mathematical research. This occurs at several levels. On the first level, categories provide a convenient conceptual language, based on the notions of category, functor, natural transformation, contravariance, and functor category. These notions are presented, with appropriate examples, in Chapters I and II. Next comes the fundamental idea of an adjoint (...)
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Topoi: The Catergorical Analysis of Logic.Philip J. Scott - 2006 - Dover Publications.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • On the ehresmann–vanbremeersch theory and mathematical biology.Paul C. Kainen - 2009 - Axiomathes 19 (3):225-244.
    Category theory has been proposed as the ultimate algebraic model for biology. We review the Ehresmann–Vanbremeersch theory in the context of other mathematical approaches.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Category Theory as a Conceptual Tool in the Study of Cognition.François Magnan & Gonzalo E. Reyes - 1994 - In John Macnamara & Gonzalo E. Reyes (eds.), The Logical Foundations of Cognition. Oxford University Press USA. pp. 57-90.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Adjointness in Foundations.F. William Lawvere - 1969 - Dialectica 23 (3‐4):281-296.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • (1 other version)Category Theory.S. Awodey - 2007 - Bulletin of Symbolic Logic 13 (3):371-372.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Category theory and concrete universals.David P. Ellerman - 1988 - Erkenntnis 28 (3):409 - 429.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Category Theory.[author unknown] - 2007 - Studia Logica 86 (1):133-135.
    Download  
     
    Export citation  
     
    Bookmark   36 citations