Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Model Theory.Michael Makkai, C. C. Chang & H. J. Keisler - 1991 - Journal of Symbolic Logic 56 (3):1096.
    Download  
     
    Export citation  
     
    Bookmark   410 citations  
  • Aronszajn trees and the independence of the transfer property.William Mitchell - 1972 - Annals of Mathematical Logic 5 (1):21.
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • The Higher Infinite.Akihiro Kanamori - 2000 - Studia Logica 65 (3):443-446.
    Download  
     
    Export citation  
     
    Bookmark   211 citations  
  • Models with second order properties II. Trees with no undefined branches.Saharon Shelah - 1978 - Annals of Mathematical Logic 14 (1):73.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Aronszajn trees on ℵ2 and ℵ3.Uri Abraham - 1983 - Annals of Mathematical Logic 24 (3):213-230.
    Assuming the existence of a supercompact cardinal and a weakly compact cardinal above it, we provide a generic extension where there are no Aronszajn trees of height ω 2 or ω 3 . On the other hand we show that some large cardinal assumptions are necessary for such a consistency result.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Some applications of iterated ultrapowers in set theory.Kenneth Kunen - 1970 - Annals of Mathematical Logic 1 (2):179.
    Download  
     
    Export citation  
     
    Bookmark   97 citations  
  • The tree property at successors of singular cardinals.Menachem Magidor & Saharon Shelah - 1996 - Archive for Mathematical Logic 35 (5-6):385-404.
    Assuming some large cardinals, a model of ZFC is obtained in which $\aleph_{\omega+1}$ carries no Aronszajn trees. It is also shown that if $\lambda$ is a singular limit of strongly compact cardinals, then $\lambda^+$ carries no Aronszajn trees.
    Download  
     
    Export citation  
     
    Bookmark   38 citations