Switch to: Citations

Add references

You must login to add references.
  1. The development of renormalization group methods for particle physics: Formal analogies between classical statistical mechanics and quantum field theory.Doreen Fraser - 2020 - Synthese 197 (7):3027-3063.
    Analogies between classical statistical mechanics and quantum field theory played a pivotal role in the development of renormalization group methods for application in the two theories. This paper focuses on the analogies that informed the application of RG methods in QFT by Kenneth Wilson and collaborators in the early 1970's. The central task that is accomplished is the identification and analysis of the analogical mappings employed. The conclusion is that the analogies in this case study are formal analogies, and not (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Are Rindler Quanta Real? Inequivalent Particle Concepts in Quantum Field Theory.Rob Clifton & Hans Halvorson - 2001 - British Journal for the Philosophy of Science 52 (3):417-470.
    Philosophical reflection on quantum field theory has tended to focus on how it revises our conception of what a particle is. However, there has been relatively little discussion of the threat to the "reality" of particles posed by the possibility of inequivalent quantizations of a classical field theory, i.e., inequivalent representations of the algebra of observables of the field in terms of operators on a Hilbert space. The threat is that each representation embodies its own distinctive conception of what a (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Heuristics and the generalized correspondence principle.Hans Radder - 1991 - British Journal for the Philosophy of Science 42 (2):195-226.
    Several philosophers of science have claimed that the correspondence principle can be generalized from quantum physics to all of (particularly physical) science and that in fact it constitutes one of the major heuristical rules for the construction of new theories. In order to evaluate these claims, first the use of the correspondence principle in (the genesis of) quantum mechanics will be examined in detail. It is concluded from this and from other examples in the history of science that the principle (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • On the reduction of general relativity to Newtonian gravitation.Samuel C. Fletcher - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:1-15.
    Intertheoretic reduction in physics aspires to be both to be explanatory and perfectly general: it endeavors to explain why an older, simpler theory continues to be as successful as it is in terms of a newer, more sophisticated theory, and it aims to relate or otherwise account for as many features of the two theories as possible. Despite often being introduced as straightforward cases of intertheoretic reduction, candidate accounts of the reduction of general relativity to Newtonian gravitation have either been (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Toward an Understanding of Parochial Observables.Benjamin Feintzeig - 2016 - British Journal for the Philosophy of Science:axw010.
    Ruetsche claims that an abstract C*-algebra of observables will not contain all of the physically significant observables for a quantum system with infinitely many degrees of freedom. This would signal that in addition to the abstract algebra, one must use Hilbert space representations for some purposes. I argue to the contrary that there is a way to recover all of the physically significant observables by purely algebraic methods. 1 Introduction2 Preliminaries3 Three Extremist Interpretations3.1 Algebraic imperialism3.2 Hilbert space conservatism3.3 Universalism4 Parochial (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On broken symmetries and classical systems.Benjamin Feintzeig - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):267-273.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Theory Construction in Physics: Continuity from Classical to Quantum.Benjamin H. Feintzeig - 2017 - Erkenntnis 82 (6):1195-1210.
    It is well known that the process of quantization—constructing a quantum theory out of a classical theory—is not in general a uniquely determined procedure. There are many inequivalent methods that lead to different choices for what to use as our quantum theory. In this paper, I show that by requiring a condition of continuity between classical and quantum physics, we constrain and inform the quantum theories that we end up with.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The logic of reduction: The case of gravitation. [REVIEW]Fritz Rohrlich - 1989 - Foundations of Physics 19 (10):1151-1170.
    The reduction from Einstein's to Newton's gravitation theories (and intermediate steps) is used to exemplify reduction in physical theories. Both dimensionless and dimensional reduction are presented, and the advantages and disadvantages of each are pointed out. It is concluded that neither a completely reductionist nor a completely antireductionist view can be maintained. Only the mathematical structure is strictly reducible. The interpretation (the model, the central concepts) of the superseded theory T′ can at best only partially be derived directly from the (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Regarding the ‘Hole Argument’.James Owen Weatherall - 2018 - British Journal for the Philosophy of Science 69 (2):329-350.
    I argue that the hole argument is based on a misleading use of the mathematical formalism of general relativity. If one is attentive to mathematical practice, I will argue, the hole argument is blocked. _1._ Introduction _2._ A Warmup Exercise _3._ The Hole Argument _4._ An Argument from Classical Spacetime Theory _5._ The Hole Argument Revisited.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Generalized Ehrenfest Relations, Deformation Quantization, and the Geometry of Inter-model Reduction.Joshua Rosaler - 2018 - Foundations of Physics 48 (3):355-385.
    This study attempts to spell out more explicitly than has been done previously the connection between two types of formal correspondence that arise in the study of quantum–classical relations: one the one hand, deformation quantization and the associated continuity between quantum and classical algebras of observables in the limit \, and, on the other, a certain generalization of Ehrenfest’s Theorem and the result that expectation values of position and momentum evolve approximately classically for narrow wave packet states. While deformation quantization (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Toward an Understanding of Parochial Observables.Benjamin Feintzeig - 2018 - British Journal for the Philosophy of Science 69 (1):161-191.
    ABSTRACT Ruetsche claims that an abstract C*-algebra of observables will not contain all of the physically significant observables for a quantum system with infinitely many degrees of freedom. This would signal that in addition to the abstract algebra, one must use Hilbert space representations for some purposes. I argue to the contrary that there is a way to recover all of the physically significant observables by purely algebraic methods. 1Introduction 2Preliminaries 3Three Extremist Interpretations 3.1Algebraic imperialism 3.2Hilbert space conservatism 3.3Universalism 4Parochial (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On the Choice of Algebra for Quantization.Benjamin H. Feintzeig - 2018 - Philosophy of Science 85 (1):102-125.
    In this article, I examine the relationship between physical quantities and physical states in quantum theories. I argue against the claim made by Arageorgis that the approach to interpreting quantum theories known as Algebraic Imperialism allows for “too many states.” I prove a result establishing that the Algebraic Imperialist has very general resources that she can employ to change her abstract algebra of quantities in order to rule out unphysical states.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Interpretation neutrality in the classical domain of quantum theory.Joshua Rosaler - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:54-72.
    I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie-Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • “Formal” Versus “Empirical” Approaches to Quantum–Classical Reduction.Joshua Rosaler - 2015 - Topoi 34 (2):325-338.
    I distinguish two types of reduction within the context of quantum-classical relations, which I designate “formal” and “empirical”. Formal reduction holds or fails to hold solely by virtue of the mathematical relationship between two theories; it is therefore a two-place, a priori relation between theories. Empirical reduction requires one theory to encompass the range of physical behaviors that are well-modeled in another theory; in a certain sense, it is a three-place, a posteriori relation connecting the theories and the domain of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Emergence in exact natural science.Hans Primas - unknown
    The context of an operational description is given by the distinction between what we consider as relevant and what as irrelevant for a particular experiment or observation. A rigorous description of a context in terms of a mathematically formulated context-independent fundamental theory is possible by the restriction of the domain of the basic theory and the introduction of a new coarser topology. Such a new topology is never given by first principles, but depends in a crucial way on the abstractions (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Two concepts of intertheoretic reduction.Thomas Nickles - 1973 - Journal of Philosophy 70 (April):181-201.
    Download  
     
    Export citation  
     
    Bookmark   133 citations  
  • Naturalness, Wilsonian renormalization, and “fundamental parameters” in quantum field theory.Joshua Rosaler & Robert Harlander - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66:118-134.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Local reduction in physics.Joshua Rosaler - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 50 (C):54-69.
    A conventional wisdom about the progress of physics holds that successive theories wholly encompass the domains of their predecessors through a process that is often called reduction. While certain influential accounts of inter-theory reduction in physics take reduction to require a single "global" derivation of one theory's laws from those of another, I show that global reductions are not available in all cases where the conventional wisdom requires reduction to hold. However, I argue that a weaker "local" form of reduction, (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • On Representational Capacities, with an Application to General Relativity.Samuel C. Fletcher - 2020 - Foundations of Physics 50 (4):228-249.
    Recent work on the hole argument in general relativity by Weatherall has drawn attention to the neglected concept of models’ representational capacities. I argue for several theses about the structure of these capacities, including that they should be understood not as many-to-one relations from models to the world, but in general as many-to-many relations constrained by the models’ isomorphisms. I then compare these ideas with a recent argument by Belot for the claim that some isometries “generate new possibilities” in general (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Regarding the ‘Hole Argument’.James Owen Weatherall - 2016 - British Journal for the Philosophy of Science:axw012.
    I argue that the Hole Argument is based on a misleading use of the mathematical formalism of general relativity. If one is attentive to mathematical practice, I will argue, the Hole Argument is blocked.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • There is good physics in theory reduction.Fritz Rohrlich - 1990 - Foundations of Physics 20 (11):1399-1412.
    Theory reduction is analyzed and examples are presented from various branches of physics. The procedure takes different forms in different theories. Examples from various theories are arranged in increasing order of difficulty. Special emphasis is placed on the quantum to classical reduction. It is argued that there is good and interesting physics in theory reduction and that it deserves more attention than it has been receiving in the past.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Chaos, quantization, and the correspondence principle.Robert W. Batterman - 1991 - Synthese 89 (2):189 - 227.
    Download  
     
    Export citation  
     
    Bookmark   14 citations