Switch to: References

Add citations

You must login to add citations.
  1. Two dogmas of dynamicism.James Owen Weatherall - 2020 - Synthese 199 (S2):253-275.
    I critically discuss two dogmas of the “dynamical approach” to spacetime in general relativity, as advanced by Harvey Brown [Physical Relativity Oxford:Oxford University Press] and collaborators. The first dogma is that positing a “spacetime geometry” has no implications for the behavior of matter. The second dogma is that postulating the “Strong Equivalence Principle” suffices to ensure that matter is “adapted” to spacetime geometry. I conclude by discussing “spacetime functionalism”. The discussion is presented in reaction to and sympathy with recent work (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Geometrical Constructivism and Modal Relationalism: Further Aspects of the Dynamical/Geometrical Debate.James Read - 2020 - International Studies in the Philosophy of Science 33 (1):23-41.
    I draw together some recent literature on the debate between dynamical versus geometrical approaches to spacetime theories, in order to argue that there exist defensible versions of the geometr...
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Holes in Spacetime: Some Neglected Essentials.Trevor Teitel - 2019 - Journal of Philosophy 116 (7):353-389.
    The hole argument purports to show that all spacetime theories of a certain form are indeterministic, including the General Theory of Relativity. The argument has given rise to an industry of searching for a metaphysics of spacetime that delivers the right modal implications to rescue determinism. In this paper, I first argue that certain prominent extant replies to the hole argument—namely, those that appeal to an essentialist doctrine about spacetime—fail to deliver the requisite modal implications. As part of my argument, (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On Representational Capacities, with an Application to General Relativity.Samuel C. Fletcher - 2020 - Foundations of Physics 50 (4):228-249.
    Recent work on the hole argument in general relativity by Weatherall has drawn attention to the neglected concept of models’ representational capacities. I argue for several theses about the structure of these capacities, including that they should be understood not as many-to-one relations from models to the world, but in general as many-to-many relations constrained by the models’ isomorphisms. I then compare these ideas with a recent argument by Belot for the claim that some isometries “generate new possibilities” in general (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • What Do Symmetries Tell Us About Structure?Thomas William Barrett - 2017 - Philosophy of Science (4):617-639.
    Mathematicians, physicists, and philosophers of physics often look to the symmetries of an object for insight into the structure and constitution of the object. My aim in this paper is to explain why this practice is successful. In order to do so, I present a collection of results that are closely related to (and in a sense, generalizations of) Beth’s and Svenonius’ theorems.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Interpretation and equivalence; or, equivalence and interpretation.Neil Dewar - 2023 - Synthese 201 (4):1-24.
    This paper argues that much of the literature on interpreting scientific theories presupposes a certain picture of what interpretation involves: a picture according to which interpreting a theory is like translating from one language to another. In place of this “external” approach to interpretation, this paper proposes an “internal” approach, according to which interpretation is more concerned with delineating a theory’s internal semantic architecture.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Fifty Million Elvis Fans Can’t be Wrong.Gordon Belot - 2018 - Noûs:946-981.
    This essay revisits some classic problems in the philosophy of space and time concerning the counting of possibilities. I argue that we should think that two Newtonian worlds can differ only as to when or where things happen and that general relativistic worlds can differ in something like the same way—the first of these theses being quaintly heterodox, the second baldly heretical, according to the mores of contemporary philosophy of physics.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Sophistication about Symmetries.Neil Dewar - 2019 - British Journal for the Philosophy of Science 70 (2):485-521.
    Suppose that one thinks that certain symmetries of a theory reveal “surplus structure”. What would a formalism without that surplus structure look like? The conventional answer is that it would be a reduced theory: a theory which traffics only in structures invariant under the relevant symmetry. In this paper, I argue that there is a neglected alternative: one can work with a sophisticated version of the theory, in which the symmetries act as isomorphisms.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • On Einstein Algebras and Relativistic Spacetimes.Sarita Rosenstock, Thomas William Barrett & James Owen Weatherall - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):309-316.
    In this paper, we examine the relationship between general relativity and the theory of Einstein algebras. We show that according to a formal criterion for theoretical equivalence recently proposed by Halvorson and Weatherall, the two are equivalent theories.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Categories and the Foundations of Classical Field Theories.James Owen Weatherall - 2017 - In Elaine M. Landry (ed.), Categories for the Working Philosopher. Oxford, England: Oxford University Press.
    I review some recent work on applications of category theory to questions concerning theoretical structure and theoretical equivalence of classical field theories, including Newtonian gravitation, general relativity, and Yang-Mills theories.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Understanding Gauge.James Owen Weatherall - 2016 - Philosophy of Science 83 (5):1039-1049.
    I consider two usages of the expression "gauge theory". On one, a gauge theory is a theory with excess structure; on the other, a gauge theory is any theory appropriately related to classical electromagnetism. I make precise one sense in which one formulation of electromagnetism, the paradigmatic gauge theory on both usages, may be understood to have excess structure, and then argue that gauge theories on the second usage, including Yang-Mills theory and general relativity, do not generally have excess structure (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • The role of symmetry in the interpretation of physical theories.Adam Caulton - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):153-162.
    The symmetries of a physical theory are often associated with two things: conservation laws and representational redundancies. But how can a physical theory's symmetries give rise to interesting conservation laws, if symmetries are transformations that correspond to no genuine physical difference? In this article, I argue for a disambiguation in the notion of symmetry. The central distinction is between what I call "analytic" and "synthetic" symmetries, so called because of an analogy with analytic and synthetic propositions. "Analytic" symmetries are the (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Heraclitus-Maximal Worlds.J. B. Manchak & Thomas William Barrett - forthcoming - Journal of Philosophical Logic:1-18.
    Within the context of general relativity, the Heraclitus asymmetry property requires that no distinct pair of spacetime events have the same local structure Manchak and Barrett (2023). Here, we explore Heraclitus-maximal worlds – those which are “as large as they can be” with respect to the Heraclitus property. Using Zorn’s lemma, we prove that such worlds exist and highlight a number of their properties. If attention is restricted to Heraclitus-maximal worlds, we show senses in which observers have the epistemic resources (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Univalence and Ontic Structuralism.Lu Chen - 2024 - Foundations of Physics 54 (3):1-27.
    The persistent challenge of formulating ontic structuralism in a rigorous manner, which prioritizes structures over the entities they contain, calls for a transformation of traditional logical frameworks. I argue that Univalent Foundations (UF), which feature the axiom that all isomorphic structures are identical, offer such a foundation and are more attractive than other proposed structuralist frameworks. Furthermore, I delve into the significance in the case of the hole argument and, very briefly, the nature of symmetries.
    Download  
     
    Export citation  
     
    Bookmark  
  • Counterparts, Determinism, and the Hole Argument.Franciszek Cudek - forthcoming - British Journal for the Philosophy of Science.
    The hole argument concludes that substantivalism about spacetime entails the radical indeterminism of the general theory of relativity (GR). In this paper, I amend and defend a response to the hole argument first proposed by Butterfield (1989) that relies on the idea of counterpart substantivalism. My amendment clarifies and develops the metaphysical presuppositions of counterpart substantivalism and its relation to various definitions of determinism. My defence consists of two claims. First, contra Weatherall (2018) and others: the hole argument is not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Some Remarks on Recent Formalist Responses to the Hole Argument.Tushar Menon & James Read - 2023 - Foundations of Physics 54 (1):1-20.
    In a recent article, Halvorson and Manchak (Br J Philos Sci, Forthcoming) claim that there is no basis for the Hole Argument, because (in a certain sense) hole isometries are unique. This raises two important questions: (a) does their argument succeed?; (b) how does this formalist response to the Hole Argument relate to other recent responses to the Hole Argument in the same tradition—in particular, that of Weatherall (Br J Philos Sci 69(2):329–350, 2018)? In this article, _ad_ (a), we argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Hierarchy of Spacetime Symmetries: Holes to Heraclitus.J. B. Manchak & Thomas Barrett - forthcoming - British Journal for the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Are Dynamic Shifts Dynamical Symmetries?Caspar Jacobs - 2023 - Philosophy of Science 90 (5):1352-1362.
    Shifts are a well-known feature of the literature on spacetime symmetries. Recently, discussions have focused on so-called dynamic shifts, which by analogy with static and kinematic shifts enact arbitrary linear accelerations of all matter (as well as a change in the gravitational potential). But in mathematical formulations of these shifts, the analogy breaks down: while static and kinematic shift act on the matter field, the dynamic shift acts on spacetime structure instead. I formulate a different, `active' version of the dynamic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Mathematics and Metaphysics of the Hole Argument.Oliver Pooley & James Read - forthcoming - The British Journal for the Philosophy of Science.
    We make some remarks on the mathematics and metaphysics of the hole argument, in response to a recent article in this journal by Weatherall ([2018]). Broadly speaking, we defend the mainstream philosophical literature from the claim that correct usage of the mathematics of general relativity `blocks' the argument.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Determinism and General Relativity.Chris Smeenk & Christian Wüthrich - 2021 - Philosophy of Science 88 (4):638-664.
    We investigate the fate of determinism in general relativity, comparing the philosopher’s account with the physicist’s well-posed initial value formulations. The fate of determinism is interwoven with the question of what it is for a spacetime to be ‘physically reasonable’. A central concern is the status of global hyperbolicity, a putatively necessary condition for determinism in GR. While global hyperbolicity may fail to be true of all physically reasonable models, we analyze whether global hyperbolicity should be imposed by fiat; established (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Hole Argument, Manifold Substantivalism, and Ontic Structural Realism.Saeed Masoumi - 2021 - Journal of Philosophical Investigations 15 (35):379-401.
    The hole argument has become one of the main issues in the philosophy of space-time after the article by Earman and Norton (1987), according to which a certain version of substantivalism (manifold substantivalism) cannot be defended because it brings about to a radical indeterminism. In this article, we try to show that, first, the naming of manifold substantivalism is not appropriate since as some philosophers have said, manifold points cannot be considered to have an independent identity. Second, with a commitment (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is the classical limit “singular”?Jer Steeger & Benjamin H. Feintzeig - 2021 - Studies in History and Philosophy of Science Part A 88 (C):263-279.
    We argue against claims that the classical ℏ → 0 limit is “singular” in a way that frustrates an eliminative reduction of classical to quantum physics. We show one precise sense in which quantum mechanics and scaling behavior can be used to recover classical mechanics exactly, without making prior reference to the classical theory. To do so, we use the tools of strict deformation quantization, which provides a rigorous way to capture the ℏ → 0 limit. We then use the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Nothing but coincidences: the point-coincidence and Einstein’s struggle with the meaning of coordinates in physics.Marco Giovanelli - 2021 - European Journal for Philosophy of Science 11 (2):1-64.
    In his 1916 review paper on general relativity, Einstein made the often-quoted oracular remark that all physical measurements amount to a determination of coincidences, like the coincidence of a pointer with a mark on a scale. This argument, which was meant to express the requirement of general covariance, immediately gained great resonance. Philosophers such as Schlick found that it expressed the novelty of general relativity, but the mathematician Kretschmann deemed it as trivial and valid in all spacetime theories. With the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Landscape and the Multiverse: What’s the Problem?James Read & Baptiste Le Bihan - 2021 - Synthese 199 (3-4):7749-7771.
    As a candidate theory of quantum gravity, the popularity of string theory has waxed and waned over the past four decades. One current source of scepticism is that the theory can be used to derive, depending upon the input geometrical assumptions that one makes, a vast range of different quantum field theories, giving rise to the so-called landscape problem. One apparent way to address the landscape problem is to posit the existence of a multiverse; this, however, has in turn drawn (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Classical Limit as an Approximation.Benjamin H. Feintzeig - 2020 - Philosophy of Science 87 (4):612-639.
    I argue that it is possible to give an interpretation of the classical ℏ→0 limit of quantum mechanics that results in a partial explanation of the success of classical mechanics. The interpretation...
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Scientific Realism Made Effective.Porter Williams - 2019 - British Journal for the Philosophy of Science 70 (1):209-237.
    I argue that a common philosophical approach to the interpretation of physical theories—particularly quantum field theories—has led philosophers astray. It has driven many to declare the quantum field theories employed by practicing physicists, so-called ‘effective field theories’, to be unfit for philosophical interpretation. In particular, such theories have been deemed unable to support a realist interpretation. I argue that these claims are mistaken: attending to the manner in which these theories are employed in physical practice, I show that interpreting effective (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Algebraic structuralism.Neil Dewar - 2019 - Philosophical Studies 176 (7):1831-1854.
    This essay is about how the notion of “structure” in ontic structuralism might be made precise. More specifically, my aim is to make precise the idea that the structure of the world is given by the relations inhering in the world, in such a way that the relations are ontologically prior to their relata. The central claim is the following: one can do so by giving due attention to the relationships that hold between those relations, by making use of certain (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Structuralism in the philosophy of physics.Vincent Lam - 2017 - Philosophy Compass 12 (6):e12421.
    Ontic structuralism or ontic structural realism in the philosophy of physics can be broadly considered as an interpretative strategy providing a set of conceptual and metaphysical tools—or, more ambitiously, an ontological framework—in order to account for central features of current fundamental physics. This article aims to review the main structuralist interpretative moves in the context of our two best fundamental physical theories of matter and spacetime, namely, quantum theory and general relativity. We highlight in particular the structuralist understanding of permutation (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the Existence of Spacetime Structure.Erik Curiel - 2014 - British Journal for the Philosophy of Science:axw014.
    I examine the debate between substantivalists and relationalists about the ontological character of spacetime and conclude it is not well posed. I argue that the hole argument does not bear on the debate, because it provides no clear criterion to distinguish the positions. I propose two such precise criteria and construct separate arguments based on each to yield contrary conclusions, one supportive of something like relationalism and the other of something like substantivalism. The lesson is that one must fix an (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Fiber bundles, Yang–Mills theory, and general relativity.James Owen Weatherall - 2016 - Synthese 193 (8).
    I articulate and discuss a geometrical interpretation of Yang–Mills theory. Analogies and disanalogies between Yang–Mills theory and general relativity are also considered.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Representation and Spacetime: The Hole Argument Revisited.Aboutorab Yaghmaie, Bijan Ahmadi Kakavandi, Saeed Masoumi & Morteza Moniri - 2022 - International Studies in the Philosophy of Science 35 (2):171-188.
    Ladyman and Presnell have recently argued that the Hole argument is naturally resolved when spacetime is represented within homotopy type theory rather than set theory. The core idea behind their proposal is that the argument does not confront us with any indeterminism, since the set-theoretically different representations of spacetime involved in the argument are homotopy type-theoretically identical. In this article, we will offer a new resolution based on ZFC set theory to the argument. It neither relies on a constructive-intuitionistic form (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Peter Bergmann on observables in Hamiltonian General Relativity: A historical-critical investigation.J. Brian Pitts - 2022 - Studies in History and Philosophy of Science Part A 95 (C):1-27.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum reality: A pragmaticized neo-Kantian approach.Florian J. Boge - 2021 - Studies in History and Philosophy of Science Part A 87 (C):101-113.
    Despite remarkable efforts, it remains notoriously difficult to equip quantum theory with a coherent ontology. Hence, Healey (2017, 12) has recently suggested that ‘‘quantum theory has no physical ontology and states no facts about physical objects or events’’, and Fuchs et al. (2014, 752) similarly hold that ‘‘quantum mechanics itself does not deal directly with the objective world’’. While intriguing, these positions either raise the question of how talk of ‘physical reality’ can even remain meaningful, or they must ultimately embrace (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Sophistry about symmetries?Niels C. M. Martens & James Read - 2020 - Synthese 199 (1-2):315-344.
    A common adage runs that, given a theory manifesting symmetries, the syntax of that theory should be modified in order to construct a new theory, from which symmetry-variant structure of the original theory has been excised. Call this strategy for explicating the underlying ontology of symmetry-related models reduction. Recently, Dewar has proposed an alternative to reduction as a means of articulating the ontology of symmetry-related models—what he calls sophistication, in which the semantics of the original theory is modified, and symmetry-related (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Classical Spacetime Structure.James Owen Weatherall - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    I discuss several issues related to "classical" spacetime structure. I review Galilean, Newtonian, and Leibnizian spacetimes, and briefly describe more recent developments. The target audience is undergraduates and early graduate students in philosophy; the presentation avoids mathematical formalism as much as possible.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Scientific Representation and Theoretical Equivalence.James Nguyen - 2017 - Philosophy of Science 84 (5):982-995.
    In this article I connect two debates in the philosophy of science: the questions of scientific representation and both model and theoretical equivalence. I argue that by paying attention to how a model is used to draw inferences about its target system, we can define a notion of theoretical equivalence that turns on whether models license the same claims about the same target systems. I briefly consider the implications of this for two questions that have recently been discussed in the (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Invariance or equivalence: a tale of two principles.Caspar Jacobs - 2021 - Synthese 199 (3-4):9337-9357.
    The presence of symmetries in physical theories implies a pernicious form of underdetermination. In order to avoid this theoretical vice, philosophers often espouse a principle called Leibniz Equivalence, which states that symmetry-related models represent the same state of affairs. Moreover, philosophers have claimed that the existence of non-trivial symmetries motivates us to accept the Invariance Principle, which states that quantities that vary under a theory’s symmetries aren’t physically real. Leibniz Equivalence and the Invariance Principle are often seen as part of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Regarding ‘Leibniz Equivalence’.Bryan W. Roberts - 2020 - Foundations of Physics 50 (4):250-269.
    Leibniz Equivalence is a principle of applied mathematics that is widely assumed in both general relativity textbooks and in the philosophical literature on Einstein’s hole argument. In this article, I clarify an ambiguity in the statement of this Leibniz Equivalence, and argue that the relevant expression of it for the hole argument is strictly false. I then show that the hole argument still succeeds as a refutation of manifold substantivalism; however, recent proposals that the hole argument is undermined by principles (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Why Not Categorical Equivalence?James Owen Weatherall - 2021 - In Judit Madarász & Gergely Székely (eds.), Hajnal Andréka and István Németi on Unity of Science: From Computing to Relativity Theory Through Algebraic Logic. Springer. pp. 427-451.
    In recent years, philosophers of science have explored categorical equivalence as a promising criterion for when two theories are equivalent. On the one hand, philosophers have presented several examples of theories whose relationships seem to be clarified using these categorical methods. On the other hand, philosophers and logicians have studied the relationships, particularly in the first order case, between categorical equivalence and other notions of equivalence of theories, including definitional equivalence and generalized definitional equivalence. In this article, I will express (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • How models represent.James Nguyen - 2016 - Dissertation,
    Scientific models are important, if not the sole, units of science. This thesis addresses the following question: in virtue of what do scientific models represent their target systems? In Part i I motivate the question, and lay out some important desiderata that any successful answer must meet. This provides a novel conceptual framework in which to think about the question of scientific representation. I then argue against Callender and Cohen’s attempt to diffuse the question. In Part ii I investigate the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Disregarding the 'Hole Argument'.Bryan W. Roberts - unknown
    Jim Weatherall has suggested that Einstein's hole argument, as presented by Earman and Norton, is based on a misleading use of mathematics. I argue on the contrary that Weatherall demands an implausible restriction on how mathematics is used. The hole argument, on the other hand, is in no new danger at all.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Change in Hamiltonian General Relativity with Spinors.J. Brian Pitts - 2021 - Foundations of Physics 51 (6):1-30.
    In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. By construing change as essential time dependence, one can find change locally in vacuum GR in the Hamiltonian formulation just where it should be. But what if spinors are present? This paper is motivated by the tendency in space-time philosophy tends to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Continuity of Geometrized Newtonian Gravitation and General Relativity.Saeed Masoumi - 2021 - Foundations of Physics 51 (2):1-33.
    Pessimistic meta-induction is a powerful argument against scientific realism, so one of the major roles for advocates of scientific realism will be trying their best to give a sustained response to this argument. On the other hand, it is also alleged that structural realism is the most plausible form of scientific realism; therefore, the plausibility of scientific realism is threatened unless one is given the explicit form of a structural continuity and minimal structural preservation for all our current theories. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Hole Argument Against Everything.Joshua Norton - 2020 - Foundations of Physics 50 (4):360-378.
    The Hole Argument was originally formulated by Einstein and it haunted him as he struggled to understand the meaning of spacetime coordinates in the context of the diffeomorphism invariance of general relativity. This argument has since been put to philosophical use by Earman and Norton to argue against a substantival conception of spacetime. In the present work I demonstrate how Earman and Norton’s Hole Argument can be extended to exclude everything and not merely substantival manifolds. These casualties of the hole (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Some Philosophical Prehistory of the (Earman-Norton) hole argument.James Owen Weatherall - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 70:79-87.
    The celu of the philosophical literature on the hole argument is the 1987 paper by Earman \& Norton ["What Price Space-time Substantivalism? The Hole Story" Br. J. Phil. Sci.]. This paper has a well-known back-story, concerning work by Stachel and Norton on Einstein's thinking in the years 1913-15. Less well-known is a connection between the hole argument and Earman's work on Leibniz in the 1970s and 1980s, which in turn can be traced to an argument first presented in 1975 by (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On broken symmetries and classical systems.Benjamin Feintzeig - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):267-273.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • New Perspectives on the Hole Argument.Bryan W. Roberts & James Owen Weatherall - 2020 - Foundations of Physics 50 (4):217-227.
    This special issue of Foundations of Physics collects together articles representing some recent new perspectives on the hole argument in the history and philosophy of physics. Our task here is to introduce those new perspectives.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Hole Argument, take n.John Dougherty - 2020 - Foundations of Physics 50 (4):330-347.
    I apply homotopy type theory to the hole argument as formulated by Earman and Norton. I argue that HoTT gives a precise sense in which diffeomorphism-related Lorentzian manifolds represent the same spacetime, undermining Earman and Norton’s verificationist dilemma and common formulations of the hole argument. However, adopting this account does not alleviate worries about determinism: general relativity formulated on Lorentzian manifolds is indeterministic using this standard of sameness and the natural formalization of determinism in HoTT. Fixing this indeterminism results in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Regarding the `Hole Argument' and the `Problem of Time'.Karim P. Y. Thebault & Sean Gryb - 2016 - Philosophy of Science 83 (4):563-584.
    The canonical formalism of general relativity affords a particularly interesting characterisation of the infamous hole argument. It also provides a natural formalism in which to relate the hole argument to the problem of time in classical and quantum gravity. In this paper we examine the connection between these two much discussed problems in the foundations of spacetime theory along two interrelated lines. First, from a formal perspective, we consider the extent to which the two problems can and cannot be precisely (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Arguments from scientific practice in the debate about the physical equivalence of symmetry-related models.Joanna Luc - 2022 - Synthese 200 (2):1-29.
    In the recent philosophical literature, several counterexamples to the interpretative principle that symmetry-related models are physically equivalent have been suggested The Oxford handbook of philosophy of physics, Oxford University Press, Oxford, 2013, Noûs 52:946–981, 2018; Fletcher in Found Phys 50:228–249, 2020). Arguments based on these counterexamples can be understood as arguments from scientific practice of roughly the following form: because in scientific practice such-and-such symmetry-related models are treated as representing distinct physical situations, these models indeed represent distinct physical situations. In (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations