Switch to: Citations

References in:

Another Look at Reflection

Erkenntnis 88 (2):479-509 (2021)

Add references

You must login to add references.
  1. Mathematical Thought and its Objects.Charles Parsons - 2007 - New York: Cambridge University Press.
    Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a version of the structuralist view of mathematical objects, according to which their existence is relative to a structure and they have no more of a 'nature' than that confers on them. Parsons also analyzes the concept of intuition (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • The potential hierarchy of sets.Øystein Linnebo - 2013 - Review of Symbolic Logic 6 (2):205-228.
    Some reasons to regard the cumulative hierarchy of sets as potential rather than actual are discussed. Motivated by this, a modal set theory is developed which encapsulates this potentialist conception. The resulting theory is equi-interpretable with Zermelo Fraenkel set theory but sheds new light on the set-theoretic paradoxes and the foundations of set theory.
    Download  
     
    Export citation  
     
    Bookmark   103 citations  
  • On a Restricted ω-Rule.J. R. Shoenfield - 1969 - Journal of Symbolic Logic 34 (1):130-131.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Arithmetical Reflection and the Provability of Soundness.Walter Dean - 2015 - Philosophia Mathematica 23 (1):31-64.
    Proof-theoretic reflection principles are schemas which attempt to express the soundness of arithmetical theories within their own language, e.g., ${\mathtt{{Prov}_{\mathsf {PA}} \rightarrow \varphi }}$ can be understood to assert that any statement provable in Peano arithmetic is true. It has been repeatedly suggested that justification for such principles follows directly from acceptance of an arithmetical theory $\mathsf {T}$ or indirectly in virtue of their derivability in certain truth-theoretic extensions thereof. This paper challenges this consensus by exploring relationships between reflection principles (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Informal Rigour and Completeness Proofs.Georg Kreisel - 1967 - In Imre Lakatos (ed.), Problems in the philosophy of mathematics. Amsterdam,: North-Holland Pub. Co.. pp. 138--157.
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • (1 other version)Transfinite recursive progressions of axiomatic theories.Solomon Feferman - 1962 - Journal of Symbolic Logic 27 (3):259-316.
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • (1 other version)Hypatia's silence. Truth, justification, and entitlement.Martin Fischer, Leon Horsten & Carlo Nicolai - manuscript
    Hartry Field distinguished two concepts of type-free truth: scientific truth and disquotational truth. We argue that scientific type-free truth cannot do justificatory work in the foundations of mathematics. We also present an argument, based on Crispin Wright's theory of cognitive projects and entitlement, that disquotational truth can do justificatory work in the foundations of mathematics. The price to pay for this is that the concept of disquotational truth requires non-classical logical treatment.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • HYPE: A System of Hyperintensional Logic.Hannes Leitgeb - 2019 - Journal of Philosophical Logic 48 (2):305-405.
    This article introduces, studies, and applies a new system of logic which is called ‘HYPE’. In HYPE, formulas are evaluated at states that may exhibit truth value gaps and truth value gluts. Simple and natural semantic rules for negation and the conditional operator are formulated based on an incompatibility relation and a partial fusion operation on states. The semantics is worked out in formal and philosophical detail, and a sound and complete axiomatization is provided both for the propositional and the (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Philosophy and Model Theory.Tim Button & Sean P. Walsh - 2018 - Oxford, UK: Oxford University Press. Edited by Sean Walsh & Wilfrid Hodges.
    Philosophy and model theory frequently meet one another. Philosophy and Model Theory aims to understand their interactions -/- Model theory is used in every ‘theoretical’ branch of analytic philosophy: in philosophy of mathematics, in philosophy of science, in philosophy of language, in philosophical logic, and in metaphysics. But these wide-ranging appeals to model theory have created a highly fragmented literature. On the one hand, many philosophically significant mathematical results are found only in mathematics textbooks: these are aimed squarely at mathematicians; (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Computational Structuralism &dagger.Volker Halbach & Leon Horsten - 2005 - Philosophia Mathematica 13 (2):174-186.
    According to structuralism in philosophy of mathematics, arithmetic is about a single structure. First-order theories are satisfied by models that do not instantiate this structure. Proponents of structuralism have put forward various accounts of how we succeed in fixing one single structure as the intended interpretation of our arithmetical language. We shall look at a proposal that involves Tennenbaum's theorem, which says that any model with addition and multiplication as recursive operations is isomorphic to the standard model of arithmetic. On (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Internal Categoricity in Arithmetic and Set Theory.Jouko Väänänen & Tong Wang - 2015 - Notre Dame Journal of Formal Logic 56 (1):121-134.
    We show that the categoricity of second-order Peano axioms can be proved from the comprehension axioms. We also show that the categoricity of second-order Zermelo–Fraenkel axioms, given the order type of the ordinals, can be proved from the comprehension axioms. Thus these well-known categoricity results do not need the so-called “full” second-order logic, the Henkin second-order logic is enough. We also address the question of “consistency” of these axiom systems in the second-order sense, that is, the question of existence of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Warrant for nothing (and foundations for free)?Crispin Wright - 2004 - Aristotelian Society Supplementary Volume 78 (1):167–212.
    Download  
     
    Export citation  
     
    Bookmark   509 citations  
  • Intuition, entitlement and the epistemology of logical laws.Crispin Wright - 2004 - Dialectica 58 (1):155–175.
    The essay addresses the well‐known idea that there has to be a place for intuition, thought of as a kind of non‐inferential rational insight, in the epistemology of basic logic if our knowledge of its principles is non‐empirical and is to allow of any finite, non‐circular reconstruction. It is argued that the error in this idea consists in its overlooking the possibility that there is, properly speaking, no knowledge of the validity of principles of basic logic. When certain important distinctions (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Sets and modality.C. Parsons - 1983 - In Charles Parsons (ed.), Mathematics in philosophy: selected essays. Ithaca, N.Y.: Cornell University Press. pp. 298--341.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Gödel theorems for non-constructive logics.Barkley Rosser - 1937 - Journal of Symbolic Logic 2 (3):129-137.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Hilbert's program and the omega-rule.Aleksandar Ignjatović - 1994 - Journal of Symbolic Logic 59 (1):322 - 343.
    In the first part of this paper we discuss some aspects of Detlefsen's attempt to save Hilbert's Program from the consequences of Godel's Second Incompleteness Theorem. His arguments are based on his interpretation of the long standing and well-known controversy on what, exactly, finitistic means are. In his paper [1] Detlefsen takes the position that there is a form of the ω-rule which is a finitistically valid means of proof, sufficient to prove the consistency of elementary number theory Z. On (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Necessity predicates and operators.William N. Reinhardt - 1980 - Journal of Philosophical Logic 9 (4):437 - 450.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Deflationism and Tarski’s Paradise.Jeffrey Ketland - 1999 - Mind 108 (429):69-94.
    Deflationsism about truth is a pot-pourri, variously claiming that truth is redundant, or is constituted by the totality of 'T-sentences', or is a purely logical device (required solely for disquotational purposes or for re-expressing finitarily infinite conjunctions and/or disjunctions). In 1980, Hartry Field proposed what might be called a 'deflationary theory of mathematics', in which it is alleged that all uses of mathematics within science are dispensable. Field's criterion for the dispensability of mathematics turns on a property of theories, called (...)
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • Existence and feasibility in arithmetic.Rohit Parikh - 1971 - Journal of Symbolic Logic 36 (3):494-508.
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • The Reality of Mathematics and the Case of Set Theory.Daniel Isaacson - 2010 - In Zsolt Novák & András Simonyi (eds.), Truth, reference, and realism. New York: Central European University Press. pp. 1-76.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Truth is Simple.Leon Horsten & Graham E. Leigh - 2016 - Mind:fzv184.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On Reflection.Leon Horsten - 2021 - Philosophical Quarterly 71 (4):738--57.
    This article gives an epistemological analysis of the reflection process by means of which you can come to know the consistency of a mathematical theory that you already accept. It is argued that this process can result in warranted belief in new mathematical principles without justifying them.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Disquotational truth and analyticity.Volker Halbach - 2001 - Journal of Symbolic Logic 66 (4):1959-1973.
    The uniform reflection principle for the theory of uniform T-sentences is added to PA. The resulting system is justified on the basis of a disquotationalist theory of truth where the provability predicate is conceived as a special kind of analyticity. The system is equivalent to the system ACA of arithmetical comprehension. If the truth predicate is also allowed to occur in the sentences that are inserted in the T-sentences, yet not in the scope of negation, the system with the reflection (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)Hypatia's silence.Martin Fischer, Leon Horsten & Carlo Nicolai - 2021 - Noûs 55 (1):62-85.
    Hartry Field distinguished two concepts of type‐free truth: scientific truth and disquotational truth. We argue that scientific type‐free truth cannot do justificatory work in the foundations of mathematics. We also present an argument, based on Crispin Wright's theory of cognitive projects and entitlement, that disquotational truth can do justificatory work in the foundations of mathematics. The price to pay for this is that the concept of disquotational truth requires non‐classical logical treatment.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Transfinite Recursive Progressions of Axiomatic Theories.Solomon Feferman - 1967 - Journal of Symbolic Logic 32 (4):530-531.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Reflecting on incompleteness.Solomon Feferman - 1991 - Journal of Symbolic Logic 56 (1):1-49.
    Download  
     
    Export citation  
     
    Bookmark   150 citations  
  • Sur le platonisme dans les mathématiques.Paul Bernays - 1935 - L’Enseignement Mathematique 34:52--69.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Sentences Undecidable in Formalized Arithmetic: An Exposition of the Theory of Kurt Gödel.A. Mostowski - 1953 - British Journal for the Philosophy of Science 3 (12):364-374.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The incompleteness theorems.Craig Smorynski - 1977 - In Jon Barwise (ed.), Handbook of mathematical logic. New York: North-Holland. pp. 821 -- 865.
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • A Deflationary Account of the Truth of the Gödel Sentence.Gabriele Pulcini & Mario Piazza - 2014 - In Giorgio Venturi, Marco Panza & Gabriele Lolli (eds.), From Logic to Practice: Italian Studies in the Philosophy of Mathematics. Cham: Springer International Publishing.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Understanding the Infinite.Shaughan Lavine & Stewart Shapiro - 1994 - Studia Logica 63 (1):123-128.
    Download  
     
    Export citation  
     
    Bookmark   27 citations