Switch to: References

Citations of:

Mathematical Thought and its Objects

New York: Cambridge University Press (2007)

Add citations

You must login to add citations.
  1. Mathematical Internal Realism.Tim Button - 2022 - In Sanjit Chakraborty & James Ferguson Conant (eds.), Engaging Putnam. Berlin, Germany: De Gruyter. pp. 157-182.
    In “Models and Reality” (1980), Putnam sketched a version of his internal realism as it might arise in the philosophy of mathematics. Here, I will develop that sketch. By combining Putnam’s model-theoretic arguments with Dummett’s reflections on Gödelian incompleteness, we arrive at (what I call) the Skolem-Gödel Antinomy. In brief: our mathematical concepts are perfectly precise; however, these perfectly precise mathematical concepts are manifested and acquired via a formal theory, which is understood in terms of a computable system of proof, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Anti-exceptionalism and the justification of basic logical principles.Matthew Carlson - 2022 - Synthese 200 (3):1-19.
    Anti-exceptionalism about logic is the thesis that logic is not special. In this paper, I consider, and reject, a challenge to this thesis. According to this challenge, there are basic logical principles, and part of what makes such principles basic is that they are epistemically exceptional. Thus, according to this challenge, the existence of basic logical principles provides reason to reject anti-exceptionalism about logic. I argue that this challenge fails, and that the exceptionalist positions motivated by it are thus unfounded. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Relationism and the Problem of Order.Michele Paolini Paoletti - 2023 - Acta Analytica 38 (2):245-273.
    Relationism holds that objects entirely depend on relations or that they must be eliminated in favour of the latter. In this article, I raise a problem for relationism. I argue that relationism cannot account for the order in which non-symmetrical relations apply to their relata. In Section 1, I introduce some concepts in the ontology of relations and define relationism. In Section 2, I present the Problem of Order for non-symmetrical relations, after distinguishing it from the Problem of Differential Application. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Human Thought, Mathematics, and Physical Discovery.Gila Sher - 2023 - In Carl Posy & Yemima Ben-Menahem (eds.), Mathematical Knowledge, Objects and Applications: Essays in Memory of Mark Steiner. Springer. pp. 301-325.
    In this paper I discuss Mark Steiner’s view of the contribution of mathematics to physics and take up some of the questions it raises. In particular, I take up the question of discovery and explore two aspects of this question – a metaphysical aspect and a related epistemic aspect. The metaphysical aspect concerns the formal structure of the physical world. Does the physical world have mathematical or formal features or constituents, and what is the nature of these constituents? The related (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf.Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This book brings together philosophers, mathematicians and logicians to penetrate important problems in the philosophy and foundations of mathematics. In philosophy, one has been concerned with the opposition between constructivism and classical mathematics and the different ontological and epistemological views that are reflected in this opposition. The dominant foundational framework for current mathematics is classical logic and set theory with the axiom of choice. This framework is, however, laden with philosophical difficulties. One important alternative foundational programme that is actively pursued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Reflection.Leon Horsten - 2021 - Philosophical Quarterly 71 (4):pqaa083.
    This article gives an epistemological analysis of the reflection process by means of which you can come to know the consistency of a mathematical theory that you already accept. It is argued that this process can result in warranted belief in new mathematical principles without justifying them.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Arithmetic is Determinate.Zachary Goodsell - 2021 - Journal of Philosophical Logic 51 (1):127-150.
    Orthodoxy holds that there is a determinate fact of the matter about every arithmetical claim. Little argument has been supplied in favour of orthodoxy, and work of Field, Warren and Waxman, and others suggests that the presumption in its favour is unjustified. This paper supports orthodoxy by establishing the determinacy of arithmetic in a well-motivated modal plural logic. Recasting this result in higher-order logic reveals that even the nominalist who thinks that there are only finitely many things should think that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Rigour, Proof and Soundness.Oliver M. W. Tatton-Brown - 2020 - Dissertation, University of Bristol
    The initial motivating question for this thesis is what the standard of rigour in modern mathematics amounts to: what makes a proof rigorous, or fail to be rigorous? How is this judged? A new account of rigour is put forward, aiming to go some way to answering these questions. Some benefits of the norm of rigour on this account are discussed. The account is contrasted with other remarks that have been made about mathematical proof and its workings, and is tested (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Theory of Implicit Commitment for Mathematical Theories.Mateusz Łełyk & Carlo Nicolai - manuscript
    The notion of implicit commitment has played a prominent role in recent works in logic and philosophy of mathematics. Although implicit commitment is often associated with highly technical studies, it remains so far an elusive notion. In particular, it is often claimed that the acceptance of a mathematical theory implicitly commits one to the acceptance of a Uniform Reflection Principle for it. However, philosophers agree that a satisfactory analysis of the transition from a theory to its reflection principle is still (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Identifying finite cardinal abstracts.Sean C. Ebels-Duggan - 2020 - Philosophical Studies 178 (5):1603-1630.
    Objects appear to fall into different sorts, each with their own criteria for identity. This raises the question of whether sorts overlap. Abstractionists about numbers—those who think natural numbers are objects characterized by abstraction principles—face an acute version of this problem. Many abstraction principles appear to characterize the natural numbers. If each abstraction principle determines its own sort, then there is no single subject-matter of arithmetic—there are too many numbers. That is, unless objects can belong to more than one sort. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Many and the One: A Philosophical Study of Plural Logic.Salvatore Florio & Øystein Linnebo - 2021 - Oxford, England: Oxford University Press.
    Plural expressions found in natural languages allow us to talk about many objects simultaneously. Plural logic — a logical system that takes plurals at face value — has seen a surge of interest in recent years. This book explores its broader significance for philosophy, logic, and linguistics. What can plural logic do for us? Are the bold claims made on its behalf correct? After introducing plural logic and its main applications, the book provides a systematic analysis of the relation between (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Abstracta Are Causal.David Friedell - 2020 - Philosophia 48 (1):133-142.
    Many philosophers think all abstract objects are causally inert. Here, focusing on novels, I argue that some abstracta are causally efficacious. First, I defend a straightforward argument for this view. Second, I outline an account of object causation—an account of how objects cause effects. This account further supports the view that some abstracta are causally efficacious.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Supertasks and Arithmetical Truth.Jared Warren & Daniel Waxman - 2020 - Philosophical Studies 177 (5):1275-1282.
    This paper discusses the relevance of supertask computation for the determinacy of arithmetic. Recent work in the philosophy of physics has made plausible the possibility of supertask computers, capable of running through infinitely many individual computations in a finite time. A natural thought is that, if supertask computers are possible, this implies that arithmetical truth is determinate. In this paper we argue, via a careful analysis of putative arguments from supertask computations to determinacy, that this natural thought is mistaken: supertasks (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Predicativity and Feferman.Laura Crosilla - 2017 - In Gerhard Jäger & Wilfried Sieg (eds.), Feferman on Foundations: Logic, Mathematics, Philosophy. Cham: Springer. pp. 423-447.
    Predicativity is a notable example of fruitful interaction between philosophy and mathematical logic. It originated at the beginning of the 20th century from methodological and philosophical reflections on a changing concept of set. A clarification of this notion has prompted the development of fundamental new technical instruments, from Russell's type theory to an important chapter in proof theory, which saw the decisive involvement of Kreisel, Feferman and Schütte. The technical outcomes of predica-tivity have since taken a life of their own, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Non-ontological Structuralism†.Michael Resnik - 2019 - Philosophia Mathematica 27 (3):303-315.
    ABSTRACT Historical structuralist views have been ontological. They either deny that there are any mathematical objects or they maintain that mathematical objects are structures or positions in them. Non-ontological structuralism offers no account of the nature of mathematical objects. My own structuralism has evolved from an early sui generis version to a non-ontological version that embraces Quine’s doctrine of ontological relativity. In this paper I further develop and explain this view.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modal Structuralism Simplified.Sharon Berry - 2018 - Canadian Journal of Philosophy 48 (2):200-222.
    Since Benacerraf’s ‘What Numbers Could Not Be, ’ there has been a growing interest in mathematical structuralism. An influential form of mathematical structuralism, modal structuralism, uses logical possibility and second order logic to provide paraphrases of mathematical statements which don’t quantify over mathematical objects. These modal structuralist paraphrases are a useful tool for nominalists and realists alike. But their use of second order logic and quantification into the logical possibility operator raises concerns. In this paper, I show that the work (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Modality and Hyperintensionality in Mathematics.David Elohim - manuscript
    This paper aims to contribute to the analysis of the nature of mathematical modality and hyperintensionality, and to the applications of the latter to absolute decidability. Rather than countenancing the interpretational type of mathematical modality as a primitive, I argue that the interpretational type of mathematical modality is a species of epistemic modality. I argue, then, that the framework of two-dimensional semantics ought to be applied to the mathematical setting. The framework permits of a formally precise account of the priority (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Modal Logic and Hyperintensional Semantics for Gödelian Intuition.David Elohim - manuscript
    This essay aims to provide a modal logic for rational intuition. Similarly to treatments of the property of knowledge in epistemic logic, I argue that rational intuition can be codified by a modal operator governed by the modal $\mu$-calculus. Via correspondence results between fixed point modal propositional logic and the bisimulation-invariant fragment of monadic second-order logic, a precise translation can then be provided between the notion of 'intuition-of', i.e., the cognitive phenomenal properties of thoughts, and the modal operators regimenting the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cognitivism about Epistemic Modality.David Elohim - manuscript
    This paper aims to vindicate the thesis that cognitive computational properties are abstract objects implemented in physical systems. I avail of the equivalence relations countenanced in Homotopy Type Theory, in order to specify an abstraction principle for epistemic intensions. The homotopic abstraction principle for epistemic intensions provides an epistemic conduit into our knowledge of intensions as abstract objects. I examine, then, how intensional functions in Epistemic Modal Algebra are deployed as core models in the philosophy of mind, Bayesian perceptual psychology, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantifier Variance and Indefinite Extensibility.Jared Warren - 2017 - Philosophical Review 126 (1):81-122.
    This essay clarifies quantifier variance and uses it to provide a theory of indefinite extensibility that I call the variance theory of indefinite extensibility. The indefinite extensibility response to the set-theoretic paradoxes sees each argument for paradox as a demonstration that we have come to a different and more expansive understanding of ‘all sets’. But indefinite extensibility is philosophically puzzling: extant accounts are either metasemantically suspect in requiring mysterious mechanisms of domain expansion, or metaphysically suspect in requiring nonstandard assumptions about (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Philosophy of Mathematics for the Masses : Extending the scope of the philosophy of mathematics.Stefan Buijsman - 2016 - Dissertation, Stockholm University
    One of the important discussions in the philosophy of mathematics, is that centered on Benacerraf’s Dilemma. Benacerraf’s dilemma challenges theorists to provide an epistemology and semantics for mathematics, based on their favourite ontology. This challenge is the point on which all philosophies of mathematics are judged, and clarifying how we might acquire mathematical knowledge is one of the main occupations of philosophers of mathematics. In this thesis I argue that this discussion has overlooked an important part of mathematics, namely mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • To bridge Gödel’s gap.Eileen S. Nutting - 2016 - Philosophical Studies 173 (8):2133-2150.
    In “Mathematical Truth,” Paul Benacerraf raises an epistemic challenge for mathematical platonists. In this paper, I examine the assumptions that motivate Benacerraf’s original challenge, and use them to construct a new causal challenge for the epistemology of mathematics. This new challenge, which I call ‘Gödel’s Gap’, appeals to intuitive insights into mathematical knowledge. Though it is a causal challenge, it does not rely on any obviously objectionable constraints on knowledge. As a result, it is more compelling than the original challenge. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A Trivialist's Travails.Thomas Donaldson - 2014 - Philosophia Mathematica 22 (3):380-401.
    This paper is an exposition and evaluation of the Agustín Rayo's views about the epistemology and metaphysics of mathematics, as they are presented in his book The Construction of Logical Space.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Representational Foundations of Computation.Michael Rescorla - 2015 - Philosophia Mathematica 23 (3):338-366.
    Turing computation over a non-linguistic domain presupposes a notation for the domain. Accordingly, computability theory studies notations for various non-linguistic domains. It illuminates how different ways of representing a domain support different finite mechanical procedures over that domain. Formal definitions and theorems yield a principled classification of notations based upon their computational properties. To understand computability theory, we must recognize that representation is a key target of mathematical inquiry. We must also recognize that computability theory is an intensional enterprise: it (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Platitudes in mathematics.Thomas Donaldson - 2015 - Synthese 192 (6):1799-1820.
    The term ‘continuous’ in real analysis wasn’t given an adequate formal definition until 1817. However, important theorems about continuity were proven long before that. How was this possible? In this paper, I introduce and refine a proposed answer to this question, derived from the work of Frank Jackson, David Lewis and other proponents of the ‘Canberra plan’. In brief, the proposal is that before 1817 the meaning of the term ‘continuous’ was determined by a number of ‘platitudes’ which had some (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Concept of Finitism.Luca Incurvati - 2015 - Synthese 192 (8):2413-2436.
    At the most general level, the concept of finitism is typically characterized by saying that finitistic mathematics is that part of mathematics which does not appeal to completed infinite totalities and is endowed with some epistemological property that makes it secure or privileged. This paper argues that this characterization can in fact be sharpened in various ways, giving rise to different conceptions of finitism. The paper investigates these conceptions and shows that they sanction different portions of mathematics as finitistic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Necessarily Maybe. Quantifiers, Modality and Vagueness.Alessandro Torza - 2015 - In Quantifiers, Quantifiers, and Quantifiers. Themes in Logic, Metaphysics, and Language. (Synthese Library vol. 373). Springer. pp. 367-387.
    Languages involving modalities and languages involving vagueness have each been thoroughly studied. On the other hand, virtually nothing has been said about the interaction of modality and vagueness. This paper aims to start filling that gap. Section 1 is a discussion of various possible sources of vague modality. Section 2 puts forward a model theory for a quantified language with operators for modality and vagueness. The model theory is followed by a discussion of the resulting logic. In Section 3, the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Structuralism and Its Ontology.Marc Gasser - 2015 - Ergo: An Open Access Journal of Philosophy 2:1-26.
    A prominent version of mathematical structuralism holds that mathematical objects are at bottom nothing but "positions in structures," purely relational entities without any sort of nature independent of the structure to which they belong. Such an ontology is often presented as a response to Benacerraf's "multiple reductions" problem, or motivated on hermeneutic grounds, as a faithful representation of the discourse and practice of mathematics. In this paper I argue that there are serious difficulties with this kind of view: its proponents (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Wittgenstein’s Philosophy of Mathematics: Felix Mühlhölzer in Conversation with Sebastian Grève.Felix Mühlhölzer - 2014 - Nordic Wittgenstein Review 3 (2):151-180.
    Sebastian Grève interviews Felix Mühlhölzer on his work on the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Bounds of Logic: A Generalized Viewpoint.Gila Sher - 1991 - MIT Press.
    The Bounds of Logic presents a new philosophical theory of the scope and nature of logic based on critical analysis of the principles underlying modern Tarskian logic and inspired by mathematical and linguistic development. Extracting central philosophical ideas from Tarski’s early work in semantics, Sher questions whether these are fully realized by the standard first-order system. The answer lays the foundation for a new, broader conception of logic. By generally characterizing logical terms, Sher establishes a fundamental result in semantics. Her (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the Exhaustion of Mathematical Entities by Structures.Adrian Heathcote - 2014 - Axiomathes 24 (2):167-180.
    There has been considerable discussion in the literature of one kind of identity problem that mathematical structuralism faces: the automorphism problem, in which the structure is unable to individuate the mathematical entities in its domain. Shapiro (Philos Math 16(3):285–309, 2008) has partly responded to these concerns. But I argue here that the theory faces an even more serious kind of identity problem, which the theory can’t overcome staying within its remit. I give two examples to make the point.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mathematical representation: playing a role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead explains the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Is Intuition Based On Understanding?[I thank Jo].Elijah Chudnoff - 2013 - Philosophy and Phenomenological Research 86 (1):42-67.
    According to the most popular non-skeptical views about intuition, intuitions justify beliefs because they are based on understanding. More precisely: if intuiting that p justifies you in believing that p it does so because your intuition is based on your understanding of the proposition that p. The aim of this paper is to raise some challenges for accounts of intuitive justification along these lines. I pursue this project from a non-skeptical perspective. I argue that there are cases in which intuiting (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Experimental Attacks on Intuitions and Answers.John Bengson - 2012 - Philosophy and Phenomenological Research 86 (3):495-532.
    This paper poses a constructive, evenhanded challenge to the idea that recent experimental work shows intuitions to be epistemically problematic. It is a challenge because it suggests that these experimental attacks neglect a considerable gap between intuitions and answers, and this neglect implies that we are at the present time unwarranted in drawing any negative conclusions about intuition’s epistemic status from the relevant empirical studies. The challenge is evenhanded because it does not load the dice by invoking an overly narrow (...)
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • Awareness of Abstract Objects.Elijah Chudnoff - 2012 - Noûs 47 (4):706-726.
    Awareness is a two-place determinable relation some determinates of which are seeing, hearing, etc. Abstract objects are items such as universals and functions, which contrast with concrete objects such as solids and liquids. It is uncontroversial that we are sometimes aware of concrete objects. In this paper I explore the more controversial topic of awareness of abstract objects. I distinguish two questions. First, the Existence Question: are there any experiences that make their subjects aware of abstract objects? Second, the Grounding (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Intuitive knowledge.Elijah Chudnoff - 2011 - Philosophical Studies 162 (2):359-378.
    In this paper I assume that we have some intuitive knowledge—i.e. beliefs that amount to knowledge because they are based on intuitions. The question I take up is this: given that some intuition makes a belief based on it amount to knowledge, in virtue of what does it do so? We can ask a similar question about perception. That is: given that some perception makes a belief based on it amount to knowledge, in virtue of what does it do so? (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • How to be a minimalist about sets.Luca Incurvati - 2012 - Philosophical Studies 159 (1):69-87.
    According to the iterative conception of set, sets can be arranged in a cumulative hierarchy divided into levels. But why should we think this to be the case? The standard answer in the philosophical literature is that sets are somehow constituted by their members. In the first part of the paper, I present a number of problems for this answer, paying special attention to the view that sets are metaphysically dependent upon their members. In the second part of the paper, (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Phenomenology and mathematics.Mirja Hartimo (ed.) - 2010 - London: Springer.
    This volume aims to establish the starting point for the development, evaluation and appraisal of the phenomenology of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Abstraction and Intuition in Peano's Axiomatizations of Geometry.Davide Rizza - 2009 - History and Philosophy of Logic 30 (4):349-368.
    Peano's axiomatizations of geometry are abstract and non-intuitive in character, whereas Peano stresses his appeal to concrete spatial intuition in the choice of the axioms. This poses the problem of understanding the interrelationship between abstraction and intuition in his geometrical works. In this article I argue that axiomatization is, for Peano, a methodology to restructure geometry and isolate its organizing principles. The restructuring produces a more abstract presentation of geometry, which does not contradict its intuitive content but only puts it (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Why do mathematicians need different ways of presenting mathematical objects? The case of cayley graphs.Irina Starikova - 2010 - Topoi 29 (1):41-51.
    This paper investigates the role of pictures in mathematics in the particular case of Cayley graphs—the graphic representations of groups. I shall argue that their principal function in that theory—to provide insight into the abstract structure of groups—is performed employing their visual aspect. I suggest that the application of a visual graph theory in the purely non-visual theory of groups resulted in a new effective approach in which pictures have an essential role. Cayley graphs were initially developed as exact mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Nature of Intuitive Justification.Elijah Chudnoff - 2011 - Philosophical Studies 153 (2):313 - 333.
    In this paper I articulate and defend a view that I call phenomenal dogmatism about intuitive justification. It is dogmatic because it includes the thesis: if it intuitively seems to you that p, then you thereby have some prima facie justification for believing that p. It is phenomenalist because it includes the thesis: intuitions justify us in believing their contents in virtue of their phenomenology—and in particular their presentational phenomenology. I explore the nature of presentational phenomenology as it occurs perception, (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Philosophy of mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Signs as a Theme in the Philosophy of Mathematical Practice.David Waszek - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer.
    Why study notations, diagrams, or more broadly the variety of nonverbal “representations” or “signs” that are used in mathematical practice? This chapter maps out recent work on the topic by distinguishing three main philosophical motivations for doing so. First, some work (like that on diagrammatic reasoning) studies signs to recover norms of informal or historical mathematical practices that would get lost if the particular signs that these practices rely on were translated away; work in this vein has the potential to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Musical Ontology and the Audibility of Musical Works.Sofía Meléndez Gutiérrez - 2023 - British Journal of Aesthetics 63 (3):333-350.
    There are compelling reasons to believe that musical works are abstract. However, this hypothesis conflicts with the platitude that musical works are appreciated by means of audition: the things that enter our ear canals and make our eardrums vibrate must be concrete, so how can musical works be listened to if they are abstract? This question constitutes the audibility problem. In this paper, I assess Julian Dodd’s elaborate attempt to solve it, and contend that Dodd’s attempt is unsuccessful. Then I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Realism and Anti-Realism about Science.Otávio Bueno - 2015 - International Journal for the Study of Skepticism 5 (2):145-167.
    Pyrrhonists provide a way of investigating the world in which conflicting views about a given topic are critically compared, assessed, and juxtaposed. Since Pyrrhonists are ultimately unable to decide between these views, they end up suspending judgment about the issues under examination. In this paper, I consider the question of whether Pyrrhonists can be realists or anti-realists about science, focusing, in particular, on contemporary philosophical discussions about it. Althoughprima faciethe answer seems to be negative, I argue that if realism and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations