Switch to: References

Add citations

You must login to add citations.
  1. Implicit commitments of instrumental acceptance: A case study.Luca Castaldo & Maciej Głowacki - forthcoming - Philosophical Quarterly.
    When accepting an axiomatic theory S, we are implicitly committed to various statements that are independent of its axioms. Examples of such implicit commitments include consistency statements and reflection principles for S. While foundational acceptance has received considerable attention in this context, the study of implicit commitments triggered by weaker notions remains underdeveloped. This article extends the analysis investigating implicit commitments inherent in instrumental acceptance, comparing them with the implicit commitments involved in foundational acceptance. Concentrating on Reinhardt’s instrumentalism vis-à-vis Kripke–Feferman (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Infinite inference and mathematical conventionalism.Douglas Blue - forthcoming - Philosophy and Phenomenological Research.
    We argue that (1) a purported example of an infinite inference we humans can actually perform admits a faithful, finitary description, and (2) infinite inference contravenes any view which does not grant our minds uncomputable powers. These arguments block the strategy, dating back to Carnap's Logical Syntax of Language, of using infinitary inference rules to secure the determinacy of arithmetical truth on conventionalist grounds.
    Download  
     
    Export citation  
     
    Bookmark  
  • A note on fragments of uniform reflection in second order arithmetic.Emanuele Frittaion - 2022 - Bulletin of Symbolic Logic 28 (3):451-465.
    We consider fragments of uniform reflection for formulas in the analytic hierarchy over theories of second order arithmetic. The main result is that for any second order arithmetic theory $T_0$ extending $\mathsf {RCA}_0$ and axiomatizable by a $\Pi ^1_{k+2}$ sentence, and for any $n\geq k+1$, $$\begin{align*}T_0+ \mathrm{RFN}_{\varPi^1_{n+2}} \ = \ T_0 + \mathrm{TI}_{\varPi^1_n}, \end{align*}$$ $$\begin{align*}T_0+ \mathrm{RFN}_{\varSigma^1_{n+1}} \ = \ T_0+ \mathrm{TI}_{\varPi^1_n}^{-}, \end{align*}$$ where T is $T_0$ augmented with full induction, and $\mathrm {TI}_{\varPi ^1_n}^{-}$ denotes the schema of transfinite induction up (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cognitive Projects and the Trustworthiness of Positive Truth.Matteo Zicchetti - 2022 - Erkenntnis (8).
    The aim of this paper is twofold: first, I provide a cluster of theories of truth in classical logic that is (internally) consistent with global reflection principles: the theories of positive truth (and falsity). After that, I analyse the _epistemic value_ of such theories. I do so employing the framework of cognitive projects introduced by Wright (Proc Aristot Soc 78:167–245, 2004), and employed—in the context of theories of truth—by Fischer et al. (Noûs 2019. https://doi.org/10.1111/nous.12292 ). In particular, I will argue (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reducing omega-model reflection to iterated syntactic reflection.Fedor Pakhomov & James Walsh - 2021 - Journal of Mathematical Logic 23 (2).
    Journal of Mathematical Logic, Volume 23, Issue 02, August 2023. In mathematical logic there are two seemingly distinct kinds of principles called “reflection principles.” Semantic reflection principles assert that if a formula holds in the whole universe, then it holds in a set-sized model. Syntactic reflection principles assert that every provable sentence from some complexity class is true. In this paper, we study connections between these two kinds of reflection principles in the setting of second-order arithmetic. We prove that, for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Anti-Mechanist Arguments Based on Gödel’s Theorem.Stanisław Krajewski - 2020 - Studia Semiotyczne 34 (1):9-56.
    The alleged proof of the non-mechanical, or non-computational, character of the human mind based on Gödel’s incompleteness theorem is revisited. Its history is reviewed. The proof, also known as the Lucas argument and the Penrose argument, is refuted. It is claimed, following Gödel himself and other leading logicians, that antimechanism is not implied by Gödel’s theorems alone. The present paper sets out this refutation in its strongest form, demonstrating general theorems implying the inconsistency of Lucas’s arithmetic and the semantic inadequacy (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Theory of Implicit Commitment for Mathematical Theories.Mateusz Łełyk & Carlo Nicolai - manuscript
    The notion of implicit commitment has played a prominent role in recent works in logic and philosophy of mathematics. Although implicit commitment is often associated with highly technical studies, it remains so far an elusive notion. In particular, it is often claimed that the acceptance of a mathematical theory implicitly commits one to the acceptance of a Uniform Reflection Principle for it. However, philosophers agree that a satisfactory analysis of the transition from a theory to its reflection principle is still (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Disquotationalism and the Compositional Principles.Richard Kimberly Heck - 2021 - In Carlo Nicolai & Johannes Stern (eds.), Modes of Truth: The Unified Approach to Truth, Modality, and Paradox. New York, NY: Routledge. pp. 105--50.
    What Bar-On and Simmons call 'Conceptual Deflationism' is the thesis that truth is a 'thin' concept in the sense that it is not suited to play any explanatory role in our scientific theorizing. One obvious place it might play such a role is in semantics, so disquotationalists have been widely concerned to argued that 'compositional principles', such as -/- (C) A conjunction is true iff its conjuncts are true -/- are ultimately quite trivial and, more generally, that semantic theorists have (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Completeness of the primitive recursive $$omega $$ ω -rule.Emanuele Frittaion - 2020 - Archive for Mathematical Logic 59 (5-6):715-731.
    Shoenfield’s completeness theorem states that every true first order arithmetical sentence has a recursive \-proof encodable by using recursive applications of the \-rule. For a suitable encoding of Gentzen style \-proofs, we show that Shoenfield’s completeness theorem applies to cut free \-proofs encodable by using primitive recursive applications of the \-rule. We also show that the set of codes of \-proofs, whether it is based on recursive or primitive recursive applications of the \-rule, is \ complete. The same \ completeness (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Naïve validity.Julien Murzi & Lorenzo Rossi - 2017 - Synthese 199 (Suppl 3):819-841.
    Beall and Murzi :143–165, 2013) introduce an object-linguistic predicate for naïve validity, governed by intuitive principles that are inconsistent with the classical structural rules. As a consequence, they suggest that revisionary approaches to semantic paradox must be substructural. In response to Beall and Murzi, Field :1–19, 2017) has argued that naïve validity principles do not admit of a coherent reading and that, for this reason, a non-classical solution to the semantic paradoxes need not be substructural. The aim of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Lieber Herr Bernays!, Lieber Herr Gödel! Gödel on finitism, constructivity and Hilbert's program.Solomon Feferman - 2008 - Dialectica 62 (2):179-203.
    This is a survey of Gödel's perennial preoccupations with the limits of finitism, its relations to constructivity, and the significance of his incompleteness theorems for Hilbert's program, using his published and unpublished articles and lectures as well as the correspondence between Bernays and Gödel on these matters. There is also an important subtext, namely the shadow of Hilbert that loomed over Gödel from the beginning to the end.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Penrose's Gödelian Argument A Review of Shadows of the Mind by Roger Penrose. [REVIEW]S. Feferman - 1995 - PSYCHE: An Interdisciplinary Journal of Research On Consciousness 2:21-32.
    In his book Shadows of the Mind: A search for the missing science of con- sciousness [SM below], Roger Penrose has turned in another bravura perfor- mance, the kind we have come to expect ever since The Emperor’s New Mind [ENM ] appeared. In the service of advancing his deep convictions and daring conjectures about the nature of human thought and consciousness, Penrose has once more drawn a wide swath through such topics as logic, computa- tion, artificial intelligence, quantum physics (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Arithmetical Reflection and the Provability of Soundness.Walter Dean - 2015 - Philosophia Mathematica 23 (1):31-64.
    Proof-theoretic reflection principles are schemas which attempt to express the soundness of arithmetical theories within their own language, e.g., ${\mathtt{{Prov}_{\mathsf {PA}} \rightarrow \varphi }}$ can be understood to assert that any statement provable in Peano arithmetic is true. It has been repeatedly suggested that justification for such principles follows directly from acceptance of an arithmetical theory $\mathsf {T}$ or indirectly in virtue of their derivability in certain truth-theoretic extensions thereof. This paper challenges this consensus by exploring relationships between reflection principles (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The Scope of Gödel’s First Incompleteness Theorem.Bernd Buldt - 2014 - Logica Universalis 8 (3-4):499-552.
    Guided by questions of scope, this paper provides an overview of what is known about both the scope and, consequently, the limits of Gödel’s famous first incompleteness theorem.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Paradox of the Knower revisited.Walter Dean & Hidenori Kurokawa - 2014 - Annals of Pure and Applied Logic 165 (1):199-224.
    The Paradox of the Knower was originally presented by Kaplan and Montague [26] as a puzzle about the everyday notion of knowledge in the face of self-reference. The paradox shows that any theory extending Robinson arithmetic with a predicate K satisfying the factivity axiom K → A as well as a few other epistemically plausible principles is inconsistent. After surveying the background of the paradox, we will focus on a recent debate about the role of epistemic closure principles in the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On bimodal logics of provability.Lev D. Beklemishev - 1994 - Annals of Pure and Applied Logic 68 (2):115-159.
    We investigate the bimodal logics sound and complete under the interpretation of modal operators as the provability predicates in certain natural pairs of arithmetical theories . Carlson characterized the provability logic for essentially reflexive extensions of theories, i.e. for pairs similar to . Here we study pairs of theories such that the gap between and is not so wide. In view of some general results concerning the problem of classification of the bimodal provability logics we are particularly interested in such (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Localizing the axioms.Athanassios Tzouvaras - 2010 - Archive for Mathematical Logic 49 (5):571-601.
    We examine what happens if we replace ZFC with a localistic/relativistic system, LZFC, whose central new axiom, denoted by Loc(ZFC), says that every set belongs to a transitive model of ZFC. LZFC consists of Loc(ZFC) plus some elementary axioms forming Basic Set Theory (BST). Some theoretical reasons for this shift of view are given. All ${\Pi_2}$ consequences of ZFC are provable in LZFC. LZFC strongly extends Kripke-Platek (KP) set theory minus Δ0-Collection and minus ${\in}$ -induction scheme. ZFC+ “there is an (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gödel's Incompleteness Theorems.Panu Raatikainen - 2013 - The Stanford Encyclopedia of Philosophy (Winter 2013 Edition), Edward N. Zalta (Ed.).
    Gödel's two incompleteness theorems are among the most important results in modern logic, and have deep implications for various issues. They concern the limits of provability in formal axiomatic theories. The first incompleteness theorem states that in any consistent formal system F within which a certain amount of arithmetic can be carried out, there are statements of the language of F which can neither be proved nor disproved in F. According to the second incompleteness theorem, such a formal system cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Arithmetical interpretations and Kripke frames of predicate modal logic of provability.Taishi Kurahashi - 2013 - Review of Symbolic Logic 6 (1):1-18.
    Solovay proved the arithmetical completeness theorem for the system GL of propositional modal logic of provability. Montagna proved that this completeness does not hold for a natural extension QGL of GL to the predicate modal logic. Let Th(QGL) be the set of all theorems of QGL, Fr(QGL) be the set of all formulas valid in all transitive and conversely well-founded Kripke frames, and let PL(T) be the set of all predicate modal formulas provable in Tfor any arithmetical interpretation. Montagna’s results (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Classes and truths in set theory.Kentaro Fujimoto - 2012 - Annals of Pure and Applied Logic 163 (11):1484-1523.
    This article studies three most basic systems of truth as well as their subsystems over set theory ZF possibly with AC or the axiom of global choice GC, and then correlates them with subsystems of Morse–Kelley class theory MK. The article aims at making an initial step towards the axiomatic study of truth in set theory in connection with class theory. Some new results on the side of class theory, such as conservativity, forcing and some forms of the reflection principle, (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Godel's program for new axioms: Why, where, how and what?Solomon Feferman - unknown
    From 1931 until late in his life (at least 1970) Godel called for the pursuit of new axioms for mathematics to settle both undecided number-theoretical propositions (of the form obtained in his incompleteness results) and undecided set-theoretical propositions (in particular CH). As to the nature of these, Godel made a variety of suggestions, but most frequently he emphasized the route of introducing ever higher axioms of in nity. In particular, he speculated (in his 1946 Princeton remarks) that there might be (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Axiomatizing Kripke’s Theory of Truth.Volker Halbach & Leon Horsten - 2006 - Journal of Symbolic Logic 71 (2):677 - 712.
    We investigate axiomatizations of Kripke's theory of truth based on the Strong Kleene evaluation scheme for treating sentences lacking a truth value. Feferman's axiomatization KF formulated in classical logic is an indirect approach, because it is not sound with respect to Kripke's semantics in the straightforward sense: only the sentences that can be proved to be true in KF are valid in Kripke's partial models. Reinhardt proposed to focus just on the sentences that can be proved to be true in (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • An Open Formalism against Incompleteness.Francesc Tomàs - 1999 - Notre Dame Journal of Formal Logic 40 (2):207-226.
    An open formalism for arithmetic is presented based on first-order logic supplemented by a very strictly controlled constructive form of the omega-rule. This formalism (which contains Peano Arithmetic) is proved (nonconstructively, of course) to be complete. Besides this main formalism, two other complete open formalisms are presented, in which the only inference rule is modus ponens. Any closure of any theorem of the main formalism is a theorem of each of these other two. This fact is proved constructively for the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Inductive Full Satisfaction Classes.Henryk Kotlarski & Zygmunt Ratajczyk - 1990 - Annals of Pure and Applied Logic 47 (1):199--223.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Gödel, truth & proof.Jaroslav Peregrin - manuscript
    In this paper I would like to indicate that this interpretation of Gödel goes far beyond what he really proved. I would like to show that to get from his result to a conclusion of the above kind requires a train of thought which is fuelled by much more than Gödel's result itself, and that a great deal of the excessive fuel should be utilized with an extra care.
    Download  
     
    Export citation  
     
    Bookmark  
  • My route to arithmetization.Solomon Feferman - 1997 - Theoria 63 (3):168-181.
    I had the pleasure of renewing my acquaintance with Per Lindström at the meeting of the Seventh Scandinavian Logic Symposium, held in Uppsala in August 1996. There at lunch one day, Per said he had long been curious about the development of some of the ideas in my paper [1960] on the arithmetization of metamathematics. In particular, I had used the construction of a non-standard definition !* of the set of axioms of P (Peano Arithmetic) to show that P + (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Nonmonotonicity in (the metamathematics of) arithmetic.Karl-Georg Niebergall - 1999 - Erkenntnis 50 (2-3):309-332.
    This paper is an attempt to bring together two separated areas of research: classical mathematics and metamathematics on the one side, non-monotonic reasoning on the other. This is done by simulating nonmonotonic logic through antitonic theory extensions. In the first half, the specific extension procedure proposed here is motivated informally, partly in comparison with some well-known non-monotonic formalisms. Operators V and, more generally, U are obtained which have some plausibility when viewed as giving nonmonotonic theory extensions. In the second half, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Intensionality and the gödel theorems.David D. Auerbach - 1985 - Philosophical Studies 48 (3):337--51.
    Philosophers of language have drawn on metamathematical results in varied ways. Extensionalist philosophers have been particularly impressed with two, not unrelated, facts: the existence, due to Frege/Tarski, of a certain sort of semantics, and the seeming absence of intensional contexts from mathematical discourse. The philosophical import of these facts is at best murky. Extensionalists will emphasize the success and clarity of the model theoretic semantics; others will emphasize the relative poverty of the mathematical idiom; still others will question the aptness (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mechanism, truth, and Penrose's new argument.Stewart Shapiro - 2003 - Journal of Philosophical Logic 32 (1):19-42.
    Sections 3.16 and 3.23 of Roger Penrose's Shadows of the mind (Oxford, Oxford University Press, 1994) contain a subtle and intriguing new argument against mechanism, the thesis that the human mind can be accurately modeled by a Turing machine. The argument, based on the incompleteness theorem, is designed to meet standard objections to the original Lucas-Penrose formulations. The new argument, however, seems to invoke an unrestricted truth predicate (and an unrestricted knowability predicate). If so, its premises are inconsistent. The usual (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Logic of paradox revisited.Graham Priest - 1984 - Journal of Philosophical Logic 13 (2):153 - 179.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Turing's thesis.Solomon Feferman with with R. L. Vaught - manuscript
    In the sole extended break from his life and varing in this way we can associate a sysied career in England, Alan Turing spent the tem of logic with any constructive ordinal. It may be asked whether such a years 1936–1938 doing graduate work at..
    Download  
     
    Export citation  
     
    Bookmark  
  • The knower paradox in the light of provability interpretations of modal logic.Paul Égré - 2004 - Journal of Logic, Language and Information 14 (1):13-48.
    This paper propounds a systematic examination of the link between the Knower Paradox and provability interpretations of modal logic. The aim of the paper is threefold: to give a streamlined presentation of the Knower Paradox and related results; to clarify the notion of a syntactical treatment of modalities; finally, to discuss the kind of solution that modal provability logic provides to the Paradox. I discuss the respective strength of different versions of the Knower Paradox, both in the framework of first-order (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Non-Tightness in Class Theory and Second-Order Arithmetic.Alfredo Roque Freire & Kameryn J. Williams - forthcoming - Journal of Symbolic Logic:1-28.
    A theory T is tight if different deductively closed extensions of T (in the same language) cannot be bi-interpretable. Many well-studied foundational theories are tight, including $\mathsf {PA}$ [39], $\mathsf {ZF}$, $\mathsf {Z}_2$, and $\mathsf {KM}$ [6]. In this article we extend Enayat’s investigations to subsystems of these latter two theories. We prove that restricting the Comprehension schema of $\mathsf {Z}_2$ and $\mathsf {KM}$ gives non-tight theories. Specifically, we show that $\mathsf {GB}$ and $\mathsf {ACA}_0$ each admit different bi-interpretable extensions, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A theory of implicit commitment.Mateusz Łełyk & Carlo Nicolai - 2022 - Synthese 200 (4):1-26.
    The notion of implicit commitment has played a prominent role in recent works in logic and philosophy of mathematics. Although implicit commitment is often associated with highly technical studies, it remains an elusive notion. In particular, it is often claimed that the acceptance of a mathematical theory implicitly commits one to the acceptance of a Uniform Reflection Principle for it. However, philosophers agree that a satisfactory analysis of the transition from a theory to its reflection principle is still lacking. We (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Reflection.Leon Horsten - 2021 - Philosophical Quarterly 71 (4):pqaa083.
    This article gives an epistemological analysis of the reflection process by means of which you can come to know the consistency of a mathematical theory that you already accept. It is argued that this process can result in warranted belief in new mathematical principles without justifying them.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Stable and Unstable Theories of Truth and Syntax.Beau Madison Mount & Daniel Waxman - 2021 - Mind 130 (518):439-473.
    Recent work on formal theories of truth has revived an approach, due originally to Tarski, on which syntax and truth theories are sharply distinguished—‘disentangled’—from mathematical base theories. In this paper, we defend a novel philosophical constraint on disentangled theories. We argue that these theories must be epistemically stable: they must possess an intrinsic motivation justifying no strictly stronger theory. In a disentangled setting, even if the base and the syntax theory are individually stable, they may be jointly unstable. We contend (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Conservative deflationism?Julien Murzi & Lorenzo Rossi - 2020 - Philosophical Studies 177 (2):535-549.
    Deflationists argue that ‘true’ is merely a logico-linguistic device for expressing blind ascriptions and infinite generalisations. For this reason, some authors have argued that deflationary truth must be conservative, i.e. that a deflationary theory of truth for a theory S must not entail sentences in S’s language that are not already entailed by S. However, it has been forcefully argued that any adequate theory of truth for S must be non-conservative and that, for this reason, truth cannot be deflationary :493–521, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Implicit Commitment of Arithmetical Theories and Its Semantic Core.Carlo Nicolai & Mario Piazza - 2019 - Erkenntnis 84 (4):913-937.
    According to the implicit commitment thesis, once accepting a mathematical formal system S, one is implicitly committed to additional resources not immediately available in S. Traditionally, this thesis has been understood as entailing that, in accepting S, we are bound to accept reflection principles for S and therefore claims in the language of S that are not derivable in S itself. It has recently become clear, however, that such reading of the implicit commitment thesis cannot be compatible with well-established positions (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Jean van Heijenoort’s Conception of Modern Logic, in Historical Perspective.Irving H. Anellis - 2012 - Logica Universalis 6 (3):339-409.
    I use van Heijenoort’s published writings and manuscript materials to provide a comprehensive overview of his conception of modern logic as a first-order functional calculus and of the historical developments which led to this conception of mathematical logic, its defining characteristics, and in particular to provide an integral account, from his most important publications as well as his unpublished notes and scattered shorter historico-philosophical articles, of how and why the mathematical logic, whose he traced to Frege and the culmination of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Deciding the undecidable: Wrestling with Hilbert's problems.Solomon Feferman - manuscript
    In the year 1900, the German mathematician David Hilbert gave a dramatic address in Paris, at the meeting of the 2nd International Congress of Mathematicians—an address which was to have lasting fame and importance. Hilbert was at that point a rapidly rising star, if not superstar, in mathematics, and before long he was to be ranked with Henri Poincar´.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Incompleteness, mechanism, and optimism.Stewart Shapiro - 1998 - Bulletin of Symbolic Logic 4 (3):273-302.
    §1. Overview. Philosophers and mathematicians have drawn lots of conclusions from Gödel's incompleteness theorems, and related results from mathematical logic. Languages, minds, and machines figure prominently in the discussion. Gödel's theorems surely tell us something about these important matters. But what?A descriptive title for this paper would be “Gödel, Lucas, Penrose, Turing, Feferman, Dummett, mechanism, optimism, reflection, and indefinite extensibility”. Adding “God and the Devil” would probably be redundant. Despite the breath-taking, whirlwind tour, I have the modest aim of forging (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Gödel’s Disjunctive Argument†.Wesley Wrigley - 2022 - Philosophia Mathematica 30 (3):306-342.
    Gödel argued that the incompleteness theorems entail that the mind is not a machine, or that certain arithmetical propositions are absolutely undecidable. His view was that the mind is not a machine, and that no arithmetical propositions are absolutely undecidable. I argue that his position presupposes that the idealized mathematician has an ability which I call the recursive-ordinal recognition ability. I show that we have this ability if, and only if, there are no absolutely undecidable arithmetical propositions. I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hierarchical Incompleteness Results for Arithmetically Definable Extensions of Fragments of Arithmetic.Rasmus Blanck - 2021 - Review of Symbolic Logic 14 (3):624-644.
    There has been a recent interest in hierarchical generalizations of classic incompleteness results. This paper provides evidence that such generalizations are readily obtainable from suitably formulated hierarchical versions of the principles used in the original proofs. By collecting such principles, we prove hierarchical versions of Mostowski’s theorem on independent formulae, Kripke’s theorem on flexible formulae, Woodin’s theorem on the universal algorithm, and a few related results. As a corollary, we obtain the expected result that the formula expressing “$\mathrm {T}$is$\Sigma _n$-ill” (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Another Look at Reflection.Martin Fischer - 2021 - Erkenntnis 88 (2):479-509.
    Reflection principles are of central interest in the development of axiomatic theories. Whereas they are independent statements they appear to have a specific epistemological status. Our trust in those principles is as warranted as our trust in the axioms of the system itself. This paper is an attempt in clarifying this special epistemic status. We provide a motivation for the adoption of uniform reflection principles by their analogy to a form of the constructive \(\omega \) -rule. Additionally, we analyse the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A metatheory of a mechanized object theory.Fausto Giunchiglia & Paolo Traverso - 1996 - Artificial Intelligence 80 (2):197-241.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Hypatia's silence.Martin Fischer, Leon Horsten & Carlo Nicolai - 2021 - Noûs 55 (1):62-85.
    Hartry Field distinguished two concepts of type‐free truth: scientific truth and disquotational truth. We argue that scientific type‐free truth cannot do justificatory work in the foundations of mathematics. We also present an argument, based on Crispin Wright's theory of cognitive projects and entitlement, that disquotational truth can do justificatory work in the foundations of mathematics. The price to pay for this is that the concept of disquotational truth requires non‐classical logical treatment.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Deflationism, Arithmetic, and the Argument from Conservativeness.Daniel Waxman - 2017 - Mind 126 (502):429-463.
    Many philosophers believe that a deflationist theory of truth must conservatively extend any base theory to which it is added. But when applied to arithmetic, it's argued, the imposition of a conservativeness requirement leads to a serious objection to deflationism: for the Gödel sentence for Peano Arithmetic is not a theorem of PA, but becomes one when PA is extended by adding plausible principles governing truth. This paper argues that no such objection succeeds. The issue turns on how we understand (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Deflationism and the Godel Phenomena: Reply to Cieslinski.N. Tennant - 2010 - Mind 119 (474):437-450.
    I clarify how the requirement of conservative extension features in the thinking of various deflationists, and how this relates to another litmus claim, that the truth-predicate stands for a real, substantial property. I discuss how the deflationist can accommodate the result, to which Cieslinski draws attention, that non-conservativeness attends even the generalization that all logical theorems in the language of arithmetic are true. Finally I provide a four-fold categorization of various forms of deflationism, by reference to the two claims of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Truth and reduction.Volker Halbach - 2000 - Erkenntnis 53 (1-2):97-126.
    The proof-theoretic results on axiomatic theories oftruth obtained by different authors in recent years are surveyed.In particular, the theories of truth are related to subsystems ofsecond-order analysis. On the basis of these results, thesuitability of axiomatic theories of truth for ontologicalreduction is evaluated.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Self-verifying axiom systems, the incompleteness theorem and related reflection principles.Dan Willard - 2001 - Journal of Symbolic Logic 66 (2):536-596.
    We will study several weak axiom systems that use the Subtraction and Division primitives (rather than Addition and Multiplication) to formally encode the theorems of Arithmetic. Provided such axiom systems do not recognize Multiplication as a total function, we will show that it is feasible for them to verify their Semantic Tableaux, Herbrand, and Cut-Free consistencies. If our axiom systems additionally do not recognize Addition as a total function, they will be capable of recognizing the consistency of their Hilbert-style deductive (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations