Switch to: Citations

Add references

You must login to add references.
  1. [Omnibus Review].Thomas Jech - 1992 - Journal of Symbolic Logic 57 (1):261-262.
    Reviewed Works:John R. Steel, A. S. Kechris, D. A. Martin, Y. N. Moschovakis, Scales on $\Sigma^1_1$ Sets.Yiannis N. Moschovakis, Scales on Coinductive Sets.Donald A. Martin, John R. Steel, The Extent of Scales in $L$.John R. Steel, Scales in $L$.
    Download  
     
    Export citation  
     
    Bookmark   219 citations  
  • The Kunen-Miller chart (lebesgue measure, the baire property, Laver reals and preservation theorems for forcing).Haim Judah & Saharon Shelah - 1990 - Journal of Symbolic Logic 55 (3):909-927.
    In this work we give a complete answer as to the possible implications between some natural properties of Lebesgue measure and the Baire property. For this we prove general preservation theorems for forcing notions. Thus we answer a decade-old problem of J. Baumgartner and answer the last three open questions of the Kunen-Miller chart about measure and category. Explicitly, in \S1: (i) We prove that if we add a Laver real, then the old reals have outer measure one. (ii) We (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Cardinal characteristics and projective wellorders.Vera Fischer & Sy David Friedman - 2010 - Annals of Pure and Applied Logic 161 (7):916-922.
    Using countable support iterations of S-proper posets, we show that the existence of a definable wellorder of the reals is consistent with each of the following: , and.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Mob families and mad families.Jörg Brendle - 1998 - Archive for Mathematical Logic 37 (3):183-197.
    We show the consistency of ${\frak o} <{\frak d}$ where ${\frak o}$ is the size of the smallest off-branch family, and ${\frak d}$ is as usual the dominating number. We also prove the consistency of ${\frak b} < {\frak a}$ with large continuum. Here, ${\frak b}$ is the unbounding number, and ${\frak a}$ is the almost disjointness number.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Projective wellorders and mad families with large continuum.Vera Fischer, Sy David Friedman & Lyubomyr Zdomskyy - 2011 - Annals of Pure and Applied Logic 162 (11):853-862.
    We show that is consistent with the existence of a -definable wellorder of the reals and a -definable ω-mad subfamily of [ω]ω.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Projective mad families.Sy-David Friedman & Lyubomyr Zdomskyy - 2010 - Annals of Pure and Applied Logic 161 (12):1581-1587.
    Using almost disjoint coding we prove the consistency of the existence of a definable ω-mad family of infinite subsets of ω together with.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the cofinality of the smallest covering of the real line by Meager sets.Tomek Bartoszynski & Jaime I. Ihoda - 1989 - Journal of Symbolic Logic 54 (3):828-832.
    We prove that the cofinality of the smallest covering of R by meager sets is bigger than the additivity of measure.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A general Mitchell style iteration.John Krueger - 2008 - Mathematical Logic Quarterly 54 (6):641-651.
    We work out the details of a schema for a mixed support forcing iteration, which generalizes the Mitchell model [7] with no Aronszajn trees on ω2.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Long projective wellorderings.Leo Harrington - 1977 - Annals of Mathematical Logic 12 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Sy D. Friedman. Fine structure and class forcing. De Gruyter series in logic and its applications, no. 3. Walter de Gruyter, Berlin and New York 2000, x + 221 pp. [REVIEW]M. C. Stanley - 2001 - Bulletin of Symbolic Logic 7 (4):522-525.
    Download  
     
    Export citation  
     
    Bookmark   5 citations