Switch to: Citations

Add references

You must login to add references.
  1. Lovely pairs of models.Itay Ben-Yaacov, Anand Pillay & Evgueni Vassiliev - 2003 - Annals of Pure and Applied Logic 122 (1-3):235-261.
    We introduce the notion of a lovely pair of models of a simple theory T, generalizing Poizat's “belles paires” of models of a stable theory and the third author's “generic pairs” of models of an SU-rank 1 theory. We characterize when a saturated model of the theory TP of lovely pairs is a lovely pair , finding an analog of the nonfinite cover property for simple theories. We show that, under these hypotheses, TP is also simple, and we study forking (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Characterizing Rosy Theories.Clifton Ealy & Alf Onshuus - 2007 - Journal of Symbolic Logic 72 (3):919 - 940.
    We examine several conditions, either the existence of a rank or a particular property of þ-forking that suggest the existence of a well-behaved independence relation, and determine the consequences of each of these conditions towards the rosiness of the theory. In particular we show that the existence of an ordinal valued equivalence relation rank is a (necessary and) sufficient condition for rosiness.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Dimension of definable sets, algebraic boundedness and Henselian fields.Lou Van den Dries - 1989 - Annals of Pure and Applied Logic 45 (2):189-209.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • On lovely pairs of geometric structures.Alexander Berenstein & Evgueni Vassiliev - 2010 - Annals of Pure and Applied Logic 161 (7):866-878.
    We study the theory of lovely pairs of geometric structures, in particular o-minimal structures. We use the pairs to isolate a class of geometric structures called weakly locally modular which generalizes the class of linear structures in the settings of SU-rank one theories and o-minimal theories. For o-minimal theories, we use the Peterzil–Starchenko trichotomy theorem to characterize for a sufficiently general point, the local geometry around it in terms of the thorn U-rank of its type inside a lovely pair.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Paires de structures Stables.Bruno Poizat - 1983 - Journal of Symbolic Logic 48 (2):239-249.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • First order topological structures and theories.Anand Pillay - 1987 - Journal of Symbolic Logic 52 (3):763-778.
    In this paper we introduce the notion of a first order topological structure, and consider various possible conditions on the complexity of the definable sets in such a structure, drawing several consequences thereof.Our aim is to develop, for a restricted class of unstable theories, results analogous to those for stable theories. The “material basis” for such an endeavor is the analogy between the field of real numbers and the field of complex numbers, the former being a “nicely behaved” unstable structure (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Stability in geometric theories.Jerry Gagelman - 2005 - Annals of Pure and Applied Logic 132 (2-3):313-326.
    The class of geometric surgical theories is examined. The main theorem is that every stable theory that is interpretable in a geometric surgical theory is superstable of finite U-rank.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Des belles paires aux beaux uples.Elisabeth Bouscaren & Bruno Poizat - 1988 - Journal of Symbolic Logic 53 (2):434-442.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Weak forms of elimination of imaginaries.Enrique Casanovas & Rafel Farré - 2004 - Mathematical Logic Quarterly 50 (2):126-140.
    We study the degree of elimination of imaginaries needed for the three main applications: to have canonical bases for types over models, to define strong types as types over algebraically closed sets and to have a Galois correspondence between definably closed sets B such that A ⊆ B ⊆ acl and closed subgroups of the Galois group Aut/A). We also characterize when the topology of the Galois group is the quotient topology.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Simple Theories.Frank O. Wagner - 2002 - Bulletin of Symbolic Logic 8 (4):522-524.
    Download  
     
    Export citation  
     
    Bookmark   27 citations