Switch to: Citations

Add references

You must login to add references.
  1. The Ground Axiom.Jonas Reitz - 2007 - Journal of Symbolic Logic 72 (4):1299 - 1317.
    A new axiom is proposed, the Ground Axiom, asserting that the universe is not a nontrivial set forcing extension of any inner model. The Ground Axiom is first-order expressible, and any model of ZFC has a class forcing extension which satisfies it. The Ground Axiom is independent of many well-known set-theoretic assertions including the Generalized Continuum Hypothesis, the assertion V=HOD that every set is ordinal definable, and the existence of measurable and supercompact cardinals. The related Bedrock Axiom, asserting that the (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Gap forcing: Generalizing the lévy-Solovay theorem.Joel David Hamkins - 1999 - Bulletin of Symbolic Logic 5 (2):264-272.
    The Lévy-Solovay Theorem [8] limits the kind of large cardinal embeddings that can exist in a small forcing extension. Here I announce a generalization of this theorem to a broad new class of forcing notions. One consequence is that many of the forcing iterations most commonly found in the large cardinal literature create no new weakly compact cardinals, measurable cardinals, strong cardinals, Woodin cardinals, strongly compact cardinals, supercompact cardinals, almost huge cardinals, huge cardinals, and so on.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • On HOD-supercompactness.Grigor Sargsyan - 2008 - Archive for Mathematical Logic 47 (7-8):765-768.
    During his Fall 2005 set theory seminar, Woodin asked whether V-supercompactness implies HOD-supercompactness. We show, as he predicted, that that the answer is no.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Incompatible Ω-Complete Theories.Peter Koellner & W. Hugh Woodin - 2009 - Journal of Symbolic Logic 74 (4):1155 - 1170.
    In 1985 the second author showed that if there is a proper class of measurable Woodin cardinals and $V^{B1} $ and $V^{B2} $ are generic extensions of V satisfying CH then $V^{B1} $ and $V^{B2} $ agree on all $\Sigma _1^2 $ -statements. In terms of the strong logic Ω-logic this can be reformulated by saying that under the above large cardinal assumption ZFC + CH is Ω-complete for $\Sigma _1^2 $ Moreover. CH is the unique $\Sigma _1^2 $ -statement (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Coding into HOD via normal measures with some applications.Arthur W. Apter & Shoshana Friedman - 2011 - Mathematical Logic Quarterly 57 (4):366-372.
    We develop a new method for coding sets while preserving GCH in the presence of large cardinals, particularly supercompact cardinals. We will use the number of normal measures carried by a measurable cardinal as an oracle, and therefore, in order to code a subset A of κ, we require that our model contain κ many measurable cardinals above κ. Additionally we will describe some of the applications of this result. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Download  
     
    Export citation  
     
    Bookmark   3 citations