Switch to: References

Citations of:

The Ground Axiom

Journal of Symbolic Logic 72 (4):1299 - 1317 (2007)

Add citations

You must login to add citations.
  1. A Reconstruction of Steel’s Multiverse Project.Penelope Maddy & Toby Meadows - 2020 - Bulletin of Symbolic Logic 26 (2):118-169.
    This paper reconstructs Steel’s multiverse project in his ‘Gödel’s program’ (Steel [2014]), first by comparing it to those of Hamkins [2012] and Woodin [2011], then by detailed analysis what’s presented in Steel’s brief text. In particular, we reconstruct his notion of a ‘natural’ theory, describe his multiverse axioms and his translation function, and assess the resulting status of the Continuum Hypothesis. In the end, we reconceptualize the defect that Steel thinks CH might suffer from and isolate what it would take (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Formal Layer of {Brain and Mind} and Emerging Consciousness in Physical Systems.Jerzy Król & Andrew Schumann - forthcoming - Foundations of Science:1-30.
    We consider consciousness attributed to systems in space-time which can be purely physical without biological background and focus on the mathematical understanding of the phenomenon. It is shown that the set theory based on sets in the foundations of mathematics, when switched to set theory based on ZFC models, is a very promising mathematical tool in explaining the brain/mind complex and the emergence of consciousness in natural and artificial systems. We formalise consciousness-supporting systems in physical space-time, but this is localised (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Large cardinals at the brink.W. Hugh Woodin - 2024 - Annals of Pure and Applied Logic 175 (1):103328.
    Download  
     
    Export citation  
     
    Bookmark  
  • Laver and set theory.Akihiro Kanamori - 2016 - Archive for Mathematical Logic 55 (1-2):133-164.
    In this commemorative article, the work of Richard Laver is surveyed in its full range and extent.
    Download  
     
    Export citation  
     
    Bookmark  
  • Inner-Model Reflection Principles.Neil Barton, Andrés Eduardo Caicedo, Gunter Fuchs, Joel David Hamkins, Jonas Reitz & Ralf Schindler - 2020 - Studia Logica 108 (3):573-595.
    We introduce and consider the inner-model reflection principle, which asserts that whenever a statement \varphi(a) in the first-order language of set theory is true in the set-theoretic universe V, then it is also true in a proper inner model W \subset A. A stronger principle, the ground-model reflection principle, asserts that any such \varphi(a) true in V is also true in some non-trivial ground model of the universe with respect to set forcing. These principles each express a form of width (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Set-theoretic blockchains.Miha E. Habič, Joel David Hamkins, Lukas Daniel Klausner, Jonathan Verner & Kameryn J. Williams - 2019 - Archive for Mathematical Logic 58 (7-8):965-997.
    Given a countable model of set theory, we study the structure of its generic multiverse, the collection of its forcing extensions and ground models, ordered by inclusion. Mostowski showed that any finite poset embeds into the generic multiverse while preserving the nonexistence of upper bounds. We obtain several improvements of his result, using what we call the blockchain construction to build generic objects with varying degrees of mutual genericity. The method accommodates certain infinite posets, and we can realize these embeddings (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Conceptual engineering for mathematical concepts.Fenner Stanley Tanswell - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy 61 (8):881-913.
    ABSTRACTIn this paper I investigate how conceptual engineering applies to mathematical concepts in particular. I begin with a discussion of Waismann’s notion of open texture, and compare it to Shapiro’s modern usage of the term. Next I set out the position taken by Lakatos which sees mathematical concepts as dynamic and open to improvement and development, arguing that Waismann’s open texture applies to mathematical concepts too. With the perspective of mathematics as open-textured, I make the case that this allows us (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The set-theoretic multiverse.Joel David Hamkins - 2012 - Review of Symbolic Logic 5 (3):416-449.
    The multiverse view in set theory, introduced and argued for in this article, is the view that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe. The universe view, in contrast, asserts that there is an absolute background set concept, with a corresponding absolute set-theoretic universe in which every set-theoretic question has a definite answer. The multiverse position, I argue, explains our experience with the enormous range of set-theoretic possibilities, a phenomenon that challenges the universe (...)
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • Pointwise definable models of set theory.Joel David Hamkins, David Linetsky & Jonas Reitz - 2013 - Journal of Symbolic Logic 78 (1):139-156.
    A pointwise definable model is one in which every object is \loos definable without parameters. In a model of set theory, this property strengthens $V=\HOD$, but is not first-order expressible. Nevertheless, if \ZFC\ is consistent, then there are continuum many pointwise definable models of \ZFC. If there is a transitive model of \ZFC, then there are continuum many pointwise definable transitive models of \ZFC. What is more, every countable model of \ZFC\ has a class forcing extension that is pointwise definable. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The grounded Martin's axiom.Miha E. Habič - 2017 - Mathematical Logic Quarterly 63 (5):437-453.
    We introduce a variant of Martin's axiom, called the grounded Martin's axiom, or math formula, which asserts that the universe is a c.c.c. forcing extension in which Martin's axiom holds for posets in the ground model. This principle already implies several of the combinatorial consequences of math formula. The new axiom is shown to be consistent with the failure of math formula and a singular continuum. We prove that math formula is preserved in a strong way when adding a Cohen (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Set-theoretic Multiverse : A Natural Context for Set Theory.Joel David Hamkins - 2011 - Annals of the Japan Association for Philosophy of Science 19:37-55.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Set-theoretic geology.Gunter Fuchs, Joel David Hamkins & Jonas Reitz - 2015 - Annals of Pure and Applied Logic 166 (4):464-501.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Subcomplete forcing principles and definable well‐orders.Gunter Fuchs - 2018 - Mathematical Logic Quarterly 64 (6):487-504.
    It is shown that the boldface maximality principle for subcomplete forcing,, together with the assumption that the universe has only set many grounds, implies the existence of a well‐ordering of definable without parameters. The same conclusion follows from, assuming there is no inner model with an inaccessible limit of measurable cardinals. Similarly, the bounded subcomplete forcing axiom, together with the assumption that does not exist, for some, implies the existence of a well‐ordering of which is Δ1‐definable without parameters, and ‐definable (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Accessing the switchboard via set forcing.Shoshana Friedman - 2012 - Mathematical Logic Quarterly 58 (4-5):303-306.
    We force a property of cardinals first proved relatively consistent by Sargsyan, that of being supercompact but not equation image-supercompact, starting from a model of set theory which does not satisfy equation image and that contains supercompact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Indestructibility, HOD, and the Ground Axiom.Arthur W. Apter - 2011 - Mathematical Logic Quarterly 57 (3):261-265.
    Let φ1 stand for the statement V = HOD and φ2 stand for the Ground Axiom. Suppose Ti for i = 1, …, 4 are the theories “ZFC + φ1 + φ2,” “ZFC + ¬φ1 + φ2,” “ZFC + φ1 + ¬φ2,” and “ZFC + ¬φ1 + ¬φ2” respectively. We show that if κ is indestructibly supercompact and λ > κ is inaccessible, then for i = 1, …, 4, Ai = df{δ κ is inaccessible. We show it is also (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The least weakly compact cardinal can be unfoldable, weakly measurable and nearly $${\theta}$$ θ -supercompact.Brent Cody, Moti Gitik, Joel David Hamkins & Jason A. Schanker - 2015 - Archive for Mathematical Logic 54 (5-6):491-510.
    We prove from suitable large cardinal hypotheses that the least weakly compact cardinal can be unfoldable, weakly measurable and even nearly θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}-supercompact, for any desired θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}. In addition, we prove several global results showing how the entire class of weakly compactcardinals, a proper class, can be made to coincide with the class of unfoldable cardinals, with the class of weakly measurable cardinals or (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Canonical Truth.Merlin Carl & Philipp Schlicht - 2022 - Axiomathes 32 (3):785-803.
    We introduce and study some variants of a notion of canonical set theoretical truth. By this, we mean truth in a transitive proper class model M of ZFC that is uniquely characterized by some $$\in$$ ∈ -formula. We show that there are interesting statements that hold in all such models, but do not follow from ZFC, such as the ground model axiom and the nonexistence of measurable cardinals. We also study a related concept in which we only require M to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Steel’s Programme: Evidential Framework, the Core and Ultimate- L.Joan Bagaria & Claudio Ternullo - 2023 - Review of Symbolic Logic 16 (3):788-812.
    We address Steel’s Programme to identify a ‘preferred’ universe of set theory and the best axioms extending $\mathsf {ZFC}$ by using his multiverse axioms $\mathsf {MV}$ and the ‘core hypothesis’. In the first part, we examine the evidential framework for $\mathsf {MV}$, in particular the use of large cardinals and of ‘worlds’ obtained through forcing to ‘represent’ alternative extensions of $\mathsf {ZFC}$. In the second part, we address the existence and the possible features of the core of $\mathsf {MV}_T$ (where (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Superstrong and other large cardinals are never Laver indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any forcing extension arising from nontrivial strategically <κ-closed forcing Q∈Vθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • More on HOD-supercompactness.Arthur W. Apter, Shoshana Friedman & Gunter Fuchs - 2021 - Annals of Pure and Applied Logic 172 (3):102901.
    We explore Woodin's Universality Theorem and consider to what extent large cardinal properties are transferred into HOD (and other inner models). We also separate the concepts of supercompactness, supercompactness in HOD and being HOD-supercompact. For example, we produce a model where a proper class of supercompact cardinals are not HOD-supercompact but are supercompact in HOD. Additionally we introduce a way to measure the degree of HOD-supercompactness of a supercompact cardinal, and we develop methods to control these degrees simultaneously for a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Inner models with large cardinal features usually obtained by forcing.Arthur W. Apter, Victoria Gitman & Joel David Hamkins - 2012 - Archive for Mathematical Logic 51 (3-4):257-283.
    We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal κ for which 2κ = κ+, another for which 2κ = κ++ and another in which the least strongly compact cardinal is supercompact. If there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Coding into HOD via normal measures with some applications.Arthur W. Apter & Shoshana Friedman - 2011 - Mathematical Logic Quarterly 57 (4):366-372.
    We develop a new method for coding sets while preserving GCH in the presence of large cardinals, particularly supercompact cardinals. We will use the number of normal measures carried by a measurable cardinal as an oracle, and therefore, in order to code a subset A of κ, we require that our model contain κ many measurable cardinals above κ. Additionally we will describe some of the applications of this result. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Models as Fundamental Entities in Set Theory: A Naturalistic and Practice-based Approach.Carolin Antos - 2022 - Erkenntnis 89 (4):1683-1710.
    This article addresses the question of fundamental entities in set theory. It takes up J. Hamkins’ claim that models of set theory are such fundamental entities and investigates it using the methodology of P. Maddy’s naturalism, Second Philosophy. In accordance with this methodology, I investigate the historical case study of the use of models in the introduction of forcing, compare this case to contemporary practice and give a systematic account of how set-theoretic practice can be said to introduce models as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Extendible cardinals and the mantle.Toshimichi Usuba - 2019 - Archive for Mathematical Logic 58 (1-2):71-75.
    The mantle is the intersection of all ground models of V. We show that if there exists an extendible cardinal then the mantle is the smallest ground model of V.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Two arguments against the generic multiverse.Toby Meadows - forthcoming - Review of Symbolic Logic:1-33.
    This paper critically examines two arguments against the generic multiverse, both of which are due to W. Hugh Woodin. Versions of the first argument have appeared a number of times in print, while the second argument is relatively novel. We shall investigate these arguments through the lens of two different attitudes one may take toward the methodology and metaphysics of set theory; and we shall observe that the impact of these arguments depends significantly on which of these attitudes is upheld. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inner mantles and iterated HOD.Jonas Reitz & Kameryn J. Williams - 2019 - Mathematical Logic Quarterly 65 (4):498-510.
    We present a class forcing notion, uniformly definable for ordinals η, which forces the ground model to be the ηth inner mantle of the extension, in which the sequence of inner mantles has length at least η. This answers a conjecture of Fuchs, Hamkins, and Reitz [1] in the positive. We also show that forces the ground model to be the ηth iterated of the extension, where the sequence of iterated s has length at least η. We conclude by showing (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The downward directed grounds hypothesis and very large cardinals.Toshimichi Usuba - 2017 - Journal of Mathematical Logic 17 (2):1750009.
    A transitive model M of ZFC is called a ground if the universe V is a set forcing extension of M. We show that the grounds ofV are downward set-directed. Consequently, we establish some fundamental theorems on the forcing method and the set-theoretic geology. For instance, the mantle, the intersection of all grounds, must be a model of ZFC. V has only set many grounds if and only if the mantle is a ground. We also show that if the universe (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • From Geometry to Geology: An Invitation to Mathematical Pluralism Through the Phenomenon of Independence.Jonas Reitz - 2017 - Journal of the Indian Council of Philosophical Research 34 (2):289-308.
    This paper explores how a pluralist view can arise in a natural way out of the day-to-day practice of modern set theory. By contrast, the widely accepted orthodox view is that there is an ultimate universe of sets V, and it is in this universe that mathematics takes place. From this view, the purpose of set theory is “learning the truth about V.” It has become apparent, however, that the phenomenon of independence—those questions left unresolved by the axioms—holds a central (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cohen forcing and inner models.Jonas Reitz - 2020 - Mathematical Logic Quarterly 66 (1):65-72.
    Given an inner model and a regular cardinal κ, we consider two alternatives for adding a subset to κ by forcing: the Cohen poset Add(κ, 1), and the Cohen poset of the inner model. The forcing from W will be at least as strong as the forcing from V (in the sense that forcing with the former adds a generic for the latter) if and only if the two posets have the same cardinality. On the other hand, a sufficient condition (...)
    Download  
     
    Export citation  
     
    Bookmark