Switch to: Citations

Add references

You must login to add references.
  1. Separating diagonal stationary reflection principles.Gunter Fuchs & Chris Lambie-Hanson - 2021 - Journal of Symbolic Logic 86 (1):262-292.
    We introduce three families of diagonal reflection principles for matrices of stationary sets of ordinals. We analyze both their relationships among themselves and their relationships with other known principles of simultaneous stationary reflection, the strong reflection principle, and the existence of square sequences.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Subcomplete forcing principles and definable well‐orders.Gunter Fuchs - 2018 - Mathematical Logic Quarterly 64 (6):487-504.
    It is shown that the boldface maximality principle for subcomplete forcing,, together with the assumption that the universe has only set many grounds, implies the existence of a well‐ordering of definable without parameters. The same conclusion follows from, assuming there is no inner model with an inaccessible limit of measurable cardinals. Similarly, the bounded subcomplete forcing axiom, together with the assumption that does not exist, for some, implies the existence of a well‐ordering of which is Δ1‐definable without parameters, and ‐definable (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   329 citations  
  • Bounded Namba forcing axiom may fail.Jindrich Zapletal - 2018 - Mathematical Logic Quarterly 64 (3):170-172.
    We show that in a σ‐closed forcing extension, the bounded forcing axiom for Namba forcing fails. This answers a question of J. T. Moore.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.
    Download  
     
    Export citation  
     
    Bookmark   270 citations  
  • Closure properties of parametric subcompleteness.Gunter Fuchs - 2018 - Archive for Mathematical Logic 57 (7-8):829-852.
    For an ordinal \, I introduce a variant of the notion of subcompleteness of a forcing poset, which I call \-subcompleteness, and show that this class of forcings enjoys some closure properties that the original class of subcomplete forcings does not seem to have: factors of \-subcomplete forcings are \-subcomplete, and if \ and \ are forcing-equivalent notions, then \ is \-subcomplete iff \ is. I formulate a Two Step Theorem for \-subcompleteness and prove an RCS iteration theorem for \-subcompleteness (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Diagonal reflections on squares.Gunter Fuchs - 2019 - Archive for Mathematical Logic 58 (1-2):1-26.
    The effects of the forcing axioms \, \ and \ on the failure of weak threaded square principles of the form \\) are analyzed. To this end, a diagonal reflection principle, \, and it implies the failure of \\) if \. It is also shown that this result is sharp. It is noted that \/\ imply the failure of \\), for every regular \, and that this result is sharp as well.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Generic Vopěnka’s Principle, remarkable cardinals, and the weak Proper Forcing Axiom.Joan Bagaria, Victoria Gitman & Ralf Schindler - 2017 - Archive for Mathematical Logic 56 (1-2):1-20.
    We introduce and study the first-order Generic Vopěnka’s Principle, which states that for every definable proper class of structures C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} of the same type, there exist B≠A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\ne A$$\end{document} in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} such that B elementarily embeds into A in some set-forcing extension. We show that, for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations