Switch to: Citations

Add references

You must login to add references.
  1. On second-order logic and natural language.James Higginbotham - 2000 - In Gila Sher & Richard Tieszen (eds.), Between logic and intuition: essays in honor of Charles Parsons. New York: Cambridge University Press. pp. 79--99.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Semantical Paradoxes, the Neutrality of Truth and the Neutrality of the Minimalist Theory of Truth.Leon Horsten - 1995 - In P. Cartois (ed.), The Many Problems of Realism (Studies in the General Philosophy of Science: Volume 3). Tilberg University Press.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Truth, Conservativeness, and Provability.Cezary Cieśliński - 2010 - Mind 119 (474):409-422.
    Conservativeness has been proposed as an important requirement for deflationary truth theories. This in turn gave rise to the so-called ‘conservativeness argument’ against deflationism: a theory of truth which is conservative over its base theory S cannot be adequate, because it cannot prove that all theorems of S are true. In this paper we show that the problems confronting the deflationist are in fact more basic: even the observation that logic is true is beyond his reach. This seems to conflict (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Deflationism and the Gödel phenomena: Reply to Tennant.Jeffrey Ketland - 2005 - Mind 114 (453):75-88.
    Any (1-)consistent and sufficiently strong system of first-order formal arithmetic fails to decide some independent Gödel sentence. We examine consistent first-order extensions of such systems. Our purpose is to discover what is minimally required by way of such extension in order to be able to prove the Gödel sentence in a nontrivial fashion. The extended methods of formal proof must capture the essentials of the so-called 'semantical argument' for the truth of the Gödel sentence. We are concerned to show that (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Deflationism and Tarski’s Paradise.Jeffrey Ketland - 1999 - Mind 108 (429):69-94.
    Deflationsism about truth is a pot-pourri, variously claiming that truth is redundant, or is constituted by the totality of 'T-sentences', or is a purely logical device (required solely for disquotational purposes or for re-expressing finitarily infinite conjunctions and/or disjunctions). In 1980, Hartry Field proposed what might be called a 'deflationary theory of mathematics', in which it is alleged that all uses of mathematics within science are dispensable. Field's criterion for the dispensability of mathematics turns on a property of theories, called (...)
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • Deflationism and the Function of Truth.Lavinia Picollo & Thomas Schindler - 2018 - Philosophical Perspectives 32 (1):326-351.
    Deflationists claim that the truth predicate was introduced into our language merely to full a certain logico-linguistic function. Oddly enough, the question what this function exactly consists in has received little attention. We argue that the best way of understanding the function of the truth predicate is as enabling us to mimic higher-order quantification in a first-order framework. Indeed, one can show that the full simple theory of types is reducible to disquotational principles of truth. Our analysis has important consequences (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Deflationism beyond arithmetic.Kentaro Fujimoto - 2019 - Synthese 196 (3):1045-1069.
    The conservativeness argument poses a dilemma to deflationism about truth, according to which a deflationist theory of truth must be conservative but no adequate theory of truth is conservative. The debate on the conservativeness argument has so far been framed in a specific formal setting, where theories of truth are formulated over arithmetical base theories. I will argue that the appropriate formal setting for evaluating the conservativeness argument is provided not by theories of truth over arithmetic but by those over (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Bounded Induction and Satisfaction Classes.Henryk Kotlarski - 1986 - Mathematical Logic Quarterly 32 (31-34):531-544.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Proof and Truth.Stewart Shapiro - 1998 - Journal of Philosophy 95 (10):493-521.
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • How Innocent Is Deflationism?Volker Halbach - 2001 - Synthese 126 (1-2):167-194.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Classes and truths in set theory.Kentaro Fujimoto - 2012 - Annals of Pure and Applied Logic 163 (11):1484-1523.
    This article studies three most basic systems of truth as well as their subsystems over set theory ZF possibly with AC or the axiom of global choice GC, and then correlates them with subsystems of Morse–Kelley class theory MK. The article aims at making an initial step towards the axiomatic study of truth in set theory in connection with class theory. Some new results on the side of class theory, such as conservativity, forcing and some forms of the reflection principle, (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Deflating the conservativeness argument.Hartry Field - 1999 - Journal of Philosophy 96 (10):533-540.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Truth, disjunction, and induction.Ali Enayat & Fedor Pakhomov - 2019 - Archive for Mathematical Logic 58 (5-6):753-766.
    By a well-known result of Kotlarski et al., first-order Peano arithmetic \ can be conservatively extended to the theory \ of a truth predicate satisfying compositional axioms, i.e., axioms stating that the truth predicate is correct on atomic formulae and commutes with all the propositional connectives and quantifiers. This result motivates the general question of determining natural axioms concerning the truth predicate that can be added to \ while maintaining conservativity over \. Our main result shows that conservativity fails even (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Notes on bounded induction for the compositional truth predicate.Bartosz Wcisło & Mateusz Łełyk - 2017 - Review of Symbolic Logic 10 (3):455-480.
    We prove that the theory of the extensional compositional truth predicate for the language of arithmetic with \Delta 0 -induction scheme for the truth predicate and the full arithmetical induction scheme is not conservative over Peano Arithmetic. In addition, we show that a slightly modified theory of truth actually proves the global reflection principle over the base theory.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Metamathematics of First-Order Arithmetic.Petr Hajek & Pavel Pudlak - 1998 - Springer Verlag.
    People have always been interested in numbers, in particular the natural numbers. Of course, we all have an intuitive notion of what these numbers are. In the late 19th century mathematicians, such as Grassmann, Frege and Dedekind, gave definitions for these familiar objects. Since then the development of axiomatic schemes for arithmetic have played a fundamental role in a logical understanding of mathematics. There has been a need for some time for a monograph on the metamathematics of first-order arithmetic. The (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Conservative deflationism?Julien Murzi & Lorenzo Rossi - 2020 - Philosophical Studies 177 (2):535-549.
    Deflationists argue that ‘true’ is merely a logico-linguistic device for expressing blind ascriptions and infinite generalisations. For this reason, some authors have argued that deflationary truth must be conservative, i.e. that a deflationary theory of truth for a theory S must not entail sentences in S’s language that are not already entailed by S. However, it has been forcefully argued that any adequate theory of truth for S must be non-conservative and that, for this reason, truth cannot be deflationary :493–521, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Deflationism, Arithmetic, and the Argument from Conservativeness.Daniel Waxman - 2017 - Mind 126 (502):429-463.
    Many philosophers believe that a deflationist theory of truth must conservatively extend any base theory to which it is added. But when applied to arithmetic, it's argued, the imposition of a conservativeness requirement leads to a serious objection to deflationism: for the Gödel sentence for Peano Arithmetic is not a theorem of PA, but becomes one when PA is extended by adding plausible principles governing truth. This paper argues that no such objection succeeds. The issue turns on how we understand (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Deflationism and the Gödel Phenomena.Neil Tennant - 2002 - Mind 111 (443):551-582.
    Any consistent and sufficiently strong system of first-order formal arithmetic fails to decide some independent Gödel sentence. We examine consistent first-order extensions of such systems. Our purpose is to discover what is minimally required by way of such extension in order to be able to prove the Gödel sentence in a non-trivial fashion. The extended methods of formal proof must capture the essentials of the so-called 'semantical argument' for the truth of the Gödel sentence. We are concerned to show that (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • (1 other version)Metamathematics of First-Order Arithmetic.Petr Hajék & Pavel Pudlák - 1994 - Studia Logica 53 (3):465-466.
    Download  
     
    Export citation  
     
    Bookmark   146 citations