Switch to: Citations

Add references

You must login to add references.
  1. Jumps of quasi-minimal enumeration degrees.Kevin McEvoy - 1985 - Journal of Symbolic Logic 50 (3):839-848.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (2 other versions)Reducibility and Completeness for Sets of Integers.Richard M. Friedberg & Hartley Rogers - 1959 - Mathematical Logic Quarterly 5 (7‐13):117-125.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • (1 other version)Cupping and noncupping in the enumeration degrees of ∑20 sets.S. Barry Cooper, Andrea Sorbi & Xiaoding Yi - 1996 - Annals of Pure and Applied Logic 82 (3):317-342.
    We prove the following three theorems on the enumeration degrees of ∑20 sets. Theorem A: There exists a nonzero noncuppable ∑20 enumeration degree. Theorem B: Every nonzero Δ20enumeration degree is cuppable to 0′e by an incomplete total enumeration degree. Theorem C: There exists a nonzero low Δ20 enumeration degree with the anticupping property.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Partial degrees and the density problem. Part 2: The enumeration degrees of the ∑2 sets are dense.S. B. Cooper - 1984 - Journal of Symbolic Logic 49 (2):503 - 513.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • On minimal pairs of enumeration degrees.Kevin McEvoy & S. Barry Cooper - 1985 - Journal of Symbolic Logic 50 (4):983-1001.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (2 other versions)Reducibility and Completeness for Sets of Integers.Richard M. Friedberg & Hartley Rogers - 1959 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 5 (7-13):117-125.
    Download  
     
    Export citation  
     
    Bookmark   43 citations