Switch to: Citations

Add references

You must login to add references.
  1. On colimits and elementary embeddings.Joan Bagaria & Andrew Brooke-Taylor - 2013 - Journal of Symbolic Logic 78 (2):562-578.
    We give a sharper version of a theorem of Rosický, Trnková and Adámek [13], and a new proof of a theorem of Rosický [12], both about colimits in categories of structures. Unlike the original proofs, which use category-theoretic methods, we use set-theoretic arguments involving elementary embeddings given by large cardinals such as $\alpha$-strongly compact and $C^{(n)}$-extendible cardinals.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Strong axioms of infinity and elementary embeddings.Robert M. Solovay - 1978 - Annals of Mathematical Logic 13 (1):73.
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • Superstrong and other large cardinals are never Laver indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any forcing extension arising from nontrivial strategically <κ-closed forcing Q∈Vθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Proper forcing and remarkable cardinals II.Ralf-Dieter Schindler - 2001 - Journal of Symbolic Logic 66 (3):1481-1492.
    The current paper proves the results announced in [5]. We isolate a new large cardinal concept, "remarkability." Consistencywise, remarkable cardinals are between ineffable and ω-Erdos cardinals. They are characterized by the existence of "O # -like" embeddings; however, they relativize down to L. It turns out that the existence of a remarkable cardinal is equiconsistent with L(R) absoluteness for proper forcings. In particular, said absoluteness does not imply Π 1 1 determinacy.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • C(n)-cardinals.Joan Bagaria - 2012 - Archive for Mathematical Logic 51 (3-4):213-240.
    For each natural number n, let C(n) be the closed and unbounded proper class of ordinals α such that Vα is a Σn elementary substructure of V. We say that κ is a C(n)-cardinal if it is the critical point of an elementary embedding j : V → M, M transitive, with j(κ) in C(n). By analyzing the notion of C(n)-cardinal at various levels of the usual hierarchy of large cardinal principles we show that, starting at the level of superstrong (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Generic Vopěnka’s Principle, remarkable cardinals, and the weak Proper Forcing Axiom.Joan Bagaria, Victoria Gitman & Ralf Schindler - 2017 - Archive for Mathematical Logic 56 (1-2):1-20.
    We introduce and study the first-order Generic Vopěnka’s Principle, which states that for every definable proper class of structures C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} of the same type, there exist B≠A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\ne A$$\end{document} in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} such that B elementarily embeds into A in some set-forcing extension. We show that, for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations